
clOpenCL - Supporting Distributed Heterogeneous
Computing in HPC Clusters

Albano Alves1, José Rufino1, António Pina2, Lúıs Santos2

1 Polytechnic Institute of Bragança, Portugal
2 University of Minho, Portugal

HeteroPar’2012
August 27, 2012 - Rhodes, Greece

1 / 25



Contents

1 Context

2 clOpenCL

3 Evaluation

4 Conclusions

2 / 25



Context clOpenCL Evaluation Conclusions

Heterogeneous Computing

Heterogeneous Computing

combines different computing devices architectures
(multi/many-core CPUs, GPGPUs, FPGAs, SoCs, ...)
into an integrated execution environment ...

... to leverage the performance of applications,
by exploiting the best capabilities of each device.

Challenges

diversity of exec. environments and programming models

not all algorithms / applications suitable to the new models

new / unfamiliar memory hierarchies on computing devices

need for explicit data transfers to/from computing devices

...

3 / 25



Context clOpenCL Evaluation Conclusions

Heterogeneous Computing in Clusters

Clusters nodes with GPUs often exploited by an hybrid approach:

MPI to distribute the application across multiple cluster nodes

CUDA/OpenCL to run kernels on GPU(s) at each node

PThreads/OpenMP to exploit CPU parallelism in each node

Porting applications from single-node-multi-GPU to
multi-node-multi-GPU platforms may be quite demanding.

Multi-node-multi-accelerator heterogeneous computing should be
as “straightforward” as in single-node-multi-accelerator scenarios.

4 / 25



Context clOpenCL Evaluation Conclusions

Heterogeneous Computing with OpenCL

OpenCL - Open Computing Language

an open programming standard for heterogeneous computing

a typical OpenCL application is C99 based and comprises

a host program
a set of routines (kernels) to run on compute evices

the OpenCL specification defines

a language for kernel programming
an API for host ↔ devices data transfers and kernels execution

three major implementations, from different vendors

AMD APP SDK, for x86 CPUs and AMD GPUs
NVIDIA OpenCL SDK, for NVIDIA GPUs only
Intel OpenCL SDK, for x86 CPUs only

5 / 25



Context clOpenCL Evaluation Conclusions

Heterogeneous Computing with OpenCL in Clusters

OpenCL applications may only use the local compute devices
of the machine where the host application component runs.

To be able to use remote computing devices,
the original OpenCL model must be extended.

MGP (Many GPUs Package)
on top of VCL (MOSIX-like); binaries only; TCP sockets
single-system-image: virtual node with all cluster GPUs
“runs the CPU part of the application in a single node”

Hybrid OpenCL
integrates the network layer in FOXC OpenCL; uses RPCs
bridge program (service) per remote node; x86 CPUs only

our approach: clOpenCL
works on top of any “canonical” OpenCL platform and is able
to use any device (CPU, GPU, ...) supported by the platform
wrapper client library + remote services; uses Open-MX

6 / 25



Context clOpenCL Evaluation Conclusions

clOpenCL Architecture

OpenCL Open−MX

Ethernet NIC

OpenCL Application

Compute Device

OpenCL librarycl

Compute Devices

Daemon

Compute Devices

Daemon

Compute Devices

Daemon

Host App.

Compute
Devices

...

clOpenCL consists of a wrapper library and a daemon

the library redirects OpenCL calls to the local OpenCL
runtime, or to a clOpenCL daemon for remote execution

daemons are OpenCL programs that handle remote calls
(clOpenCL library requests) and interact with local devices

network data exchanges use Open-MX, a user-level low
latency message passing stack over generic Ethernet

7 / 25



Context clOpenCL Evaluation Conclusions

clOpenCL Distributed Operation

running a clOpenCL application requires the prior launching of
clOpenCL daemons in cluster nodes with devices to be used

daemons are user-specific, started/stopped by users or jobs
per-user daemons isolate the OpenCL runtime of different users

when the OpenCL host application starts, the clOpenCL
library (which also wraps main) discovers all daemons

1. locally querying (omx info) the Open-MX mapper service
allows to discover all cluster nodes with Open-MX support

2. querying (omx endpoint info) all Open-MX nodes (local and
remote), allows to discover all nodes with clOpenCL daemons

3. UIDs are used to identify user-specific clOpenCL daemons

different users may exploit different device combinations
(sharing or not particular devices)

8 / 25



Context clOpenCL Evaluation Conclusions

clOpenCL Management of OpenCL Object References

the standard OpenCL API handles objects of many types

platform and device identifiers, contexts, command queues,
buffers, images, programs, kernels, events, samples, ...

OpenCL objects are pointers to complex data structures

clOpenCL doesn’t expose OpenCL pointers, once they lack
global uniqueness (daemons have private address spaces)

the clOpenCL library returns globally unique “fake pointers”
and maps them to local (real) pointers at specific daemons

9 / 25



Context clOpenCL Evaluation Conclusions

clOpenCL Platform and Device Querying

a typical OpenCL application starts by discovering which
(local) vendor-specific platforms (OpenCL implementations)
are available and which (local) compute devices do they target

in clOpenCL, platform querying returns all local platforms,
followed by all remote platforms (node by node) available in
the cluster nodes where the user spawned clOpenCL daemons

clGetPlatformInfo was extended with the new attribute
CL PLATFORM HOSTNAME, to allow OpenCL applications to
know the cluster node to which a platform belongs

makes possible to select devices in specific cluster nodes

10 / 25



Context clOpenCL Evaluation Conclusions

clOpenCL Daemons Operation

clOpenCL daemons are OpenCL programs that handle requests:

each daemon creates a pool of listener threads

each listener thread waits for request messages, using the
Open-MX tagging and masking mechanism

the request packet encloses all data required for executing the
OpenCL primitive

during the execution, additional data may be exchanged for
read and write operations

at the end of the execution, results are sent to the remote
client and the thread returns to the waiting stage

the asynchronous execution of primitives is supported by a
specific thread that handles completion state

11 / 25



Context clOpenCL Evaluation Conclusions

Testbed Cluster

Hardware: 4 cluster nodes (node-[0-3])

Intel Q9650 CPU (3GHz quad-core, 12Mb L2 cache)

8Gb of RAM (non-ECC DDR3 1333MHz)

SysKonnect SK-9871 NIC (PCI64, 1GBps Ethernet)

NVIDIA GTX460 GPU (1Gb of GDDR5 RAM)

node-0 with two GPUs

Software:

OS: Linux ROCKS 5.4

OpenCL platforms: AMD SDK 2.6, CUDA 4.1.28

Open-MX 1.5.2 with mtu 9000

12 / 25



Context clOpenCL Evaluation Conclusions

Test Application (1/5)

Matrix Product (C = AB)

simple and “embarrassingly parallel”

check clOpenCL correctness and scalability
HPC-class performance not our goal

square matrices of order n ∈ {8K , 16K , 24K}
single-precision elements (4 byte floats)

size of each matrix: 256 Mbytes, 1 Gbyte, 2.25 Gbytes

3× 256 Mbytes = 768 Mbytes < 1 Gbyte of GPU RAM
3× 2.25 Gbytes = 6.75 Gbytes < 8 Gbytes of node RAM

13 / 25



Context clOpenCL Evaluation Conclusions

Test Application (2/5)

Sliced Matrix Product

. . .

subA slice x n

A n x n

. . .

 subB n x slice

B n x n

x =

 subC slice x slice

C n x n

. . .

A and B partitioned in sub-matrices subA and subB

C partitioned in sub-matrices subC = subA× subB

slice: height/width/order of subA/subB/subC

14 / 25



Context clOpenCL Evaluation Conclusions

Test Application (3/5)

OpenCL kernel

_kernel void matrix_mult ( const int n, const int slice,
__global float * subA, __global float * subB,
__global float * subC ) {

int i, j, k; float v=0;

i = get_global_id(0); j = get_global_id(1);

for(k=0; k<n; k++)

v += subA[i*n+k] * subB[j*n+k];
subC[i*slice+j] = v;

}

important parameters of clEnqueueNDRangeKernel
size t global work size[2] = {slice, slice}

to produce subC requires slice2 work-items (kernel execs.)

size t local work size[2] = {8,8}
hand-tuned; kernel doesn’t take advantage of workgroups
and so the definition of this parameter isn’t straightforward

15 / 25



Context clOpenCL Evaluation Conclusions

Test Application (4/5)

Slice definition

simplification: same value of slice for all cluster devices

slice = 1K , 2K , 4K for n = 8K , 16K , 24K (respectively)

in our cluster, a GPU is approx. twice as fast as a CPU
with 5 GPUs and 4 CPUs, we need at least 2 × 5 + 4 = 14
kernel executions to keep all the devices of the cluster busy
at least two kernel executions per device, for a more fine-grain
load balancing =⇒ at least 28 kernel executions in total
num. of kernel execs. = num. of sub-matrices subC = (n2/slice2)

(n2/slice2) ≥ 28 =⇒ slice ≤ 1K for n = 8K ( =⇒ ≥64 kernel execs.)
=⇒ slice ≤ 2K for n = 16K ( =⇒ ≥64 kernel execs.)
=⇒ slice ≤ 4K for n = 24K ( =⇒ ≥36 kernel execs.)

16 / 25



Context clOpenCL Evaluation Conclusions

Test Application (5/5)

Host component (Host App.)

C n x n

. . .

Host App.
Compute 

Device
. . .

Compute 

Device
. . .

Compute 

Device
. . .

Compute 

Device
. . .

. . .

c
lO

p
e

n
C

L

one thread (POSIX Threads) per OpenCL device
per-thread dynamic work (auto-)assignment

i) select an unprocessed subC
ii) copy (*) subA and subB to device

(*) subA and subB reused when possible

iii) trigger the kernel execution
iv) collect and merge subC into C
v) go to step i)

17 / 25



Context clOpenCL Evaluation Conclusions

Test Configurations

host component executed on the cluster node with the most
performant set of OpenCL devices: node-0 (1CPU, 2 GPUs)

overall, 74 combinations of devices where node-0 is always
used and zero or more remote nodes (node-[1-3]) are used

most performant combinations (29) of CPUs (C) and GPUs
(G), for a certain number of CPUs (#C ) and GPUs (#G )

XXXXXX#C
#G

0 1 2 3 4 5

0 G GG GG,G GG,G,G GG,G,G,G
1 C GC GGC GGC,G GGC,G,G GGC,G,G,G
2 C,C GC,C GGC,C GGC,G,C GGC,G,G,C GGC,GC,G,G
3 C,C,C GC,C,C GGC,C,C GGC,G,C,C GGC,GC,G,C GGC,GC,GC,G
4 C,C,C,C GC,C,C,C GGC,C,C,C GGC,GC,C,C GGC,GC,GC,C GGC,GC,GC,GC

use the maximum possible number of local (node-0) devices
scatter as much as possible the remote (node-[1-3]) devices

18 / 25



Context clOpenCL Evaluation Conclusions

Test Results (1/6)

Execution Times and Speedups for n = 24K

0,2 

0,4 

0,6 

0,8 

1 

1,2 

1,4 

1,6 

1,8 

2 

2,2 

2,4 

0 1 2 3 4 5 

Speedup : 

#G: 

0 

1 

2 

3 

4 

#C : 

a) 

a) all (29) combinations

1,99 

1,99 

2,31 

2,22 

1,0 

1,2 

1,4 

1,6 

1,8 

2,0 

2,2 

2,4 

2 3 4 5 

Speedup : 

#G: 

1 

2 

3 

4 

#C : 

b) 

b) zoom: #C ≥ 1 and #G ≥ 2

( notes: zoom graphics show clOpenCL gains over OpenCL best scenario (GGC); speedup baseline (1,0) is GGC )

19 / 25



Context clOpenCL Evaluation Conclusions

Test Results (2/6)

Execution Times and Speedups for n = 16K

0,2 

0,4 

0,6 

0,8 

1 

1,2 

1,4 

1,6 

1,8 

2 

2,2 

0 1 2 3 4 5 

Speedup : 

#G: 

0 

1 

2 

3 

4 

#C : 

a) 

a) all (29) combinations

1,87 

1,94 

2,10 

2,15 

1,0 

1,2 

1,4 

1,6 

1,8 

2,0 

2,2 

2 3 4 5 

Speedup : 

#G: 

1 

2 

3 

4 

#C : 

b) 

b) zoom: #C ≥ 1 and #G ≥ 2

( notes: zoom graphics show clOpenCL gains over OpenCL best scenario (GGC); speedup baseline (1,0) is GGC )

20 / 25



Context clOpenCL Evaluation Conclusions

Test Results (3/6)

Execution Times and Speedups for n = 8K

0,2 

0,4 

0,6 

0,8 

1 

1,2 

1,4 

1,6 

1,8 

0 1 2 3 4 5 

Speedup : 

#G: 

0 

1 

2 

3 

4 

#C : 

a) 

a) all (29) combinations

1,66 
1,65 
1,62 

1,76 

1,0 

1,1 

1,2 

1,3 

1,4 

1,5 

1,6 

1,7 

1,8 

2 3 4 5 

Speedup : 

#G: 

1 

2 

3 

4 

#C : 

b) 

b) zoom: #C ≥ 1 and #G ≥ 2

( notes: zoom graphics show clOpenCL gains over OpenCL best scenario (GGC); speedup baseline (1,0) is GGC )

21 / 25



Context clOpenCL Evaluation Conclusions

Test Results (4/6)

exec. time decreases / speedup increases, with more devices

as expected, this trend is stronger when adding GPUs
too many devices may turn out to be counter-productive

summary:

n
Worst OpenCL Best OpenCL Best clOpenCL

combination time combination time combination time speedup

24K C G 4800s 2403s GGC 1084s GGC,GC,GC,G 469s 2.31

16K C G 1422s 840s GGC 337s GGC,GC,GC,GC 157s 2.15

8K C G 179s 91s GGC 38s GGC,GC,GC,GC 22s 1.76

a single CPU takes approx. twice the time of a single GPU
clOpenCL best scenarios

build on the OpenCL’s best (GGC)
tend to maximize the device usage

speedup grows with n (scalability grows with the problem size)

22 / 25



Context clOpenCL Evaluation Conclusions

Test Results (5/6)

clOpenCL speedup over OpenCL optimum (GGC) seems modest ...

“how close are real (measured) speedups from ideal speedups” ?

a GPU executes twice the kernels of a CPU in the same time

for a single ideal cluster node, with #C CPUs and #G GPUs,
the ideal (maximum) speedup would be Sideal = #C + 2×#G

comparing OpenCL optimum (GGC) with OpenCL worst case (C):

n Sreal [OpenCL] Sideal [OpenCL] Sreal [OpenCL]
Sideal [OpenCL]

24K Sreal (GGC;C)=4.43 Sideal (GGC;C)=5 88.6%

16K Sreal (GGC;C)=4.22 Sideal (GGC;C)=5 84.4%

8K Sreal (GGC;C)=4.71 Sideal (GGC;C)=5 94.2%

– Sreal (X ; Y ) = T (Y )/T (X ) is the speedup of scenario X over Y

– T(Z) is the exec. time of device combination Z

23 / 25



Context clOpenCL Evaluation Conclusions

Test Results (6/6)

comparing clOpenCL optimums with OpenCL worst case (C):

n Sreal [clOpenCL] Sideal [clOpenCL] Sreal [clOpenCL]
Sideal [clOpenCL]

24K Sreal (GGC,GC,GC,G;C)=10.23 Sideal (GGC,GC,GC,G;C)=13 78.7%

16K Sreal (GGC,GC,GC,GC;C)=9.05 Sideal (GGC,GC,GC,GC;C)=14 64.7%

8K Sreal (GGC,GC,GC,G;C)=8.21 Sideal (GGC,GC,GC,GC;C)=14 58.7%

– Sreal (X ; Y ) = T (Y )/T (X ) is the speedup of scenario X over Y

– T(Z) is the exec. time of device combination Z

comparing clOpenCL optimums with OpenCL optimum (GGC):

n α = Sreal [clOpenCL]
Sreal [OpenCL]

β = Sideal [clOpenCL]
Sideal [OpenCL]

α
β

24K 10.23 / 4.43 = 2.31 (*) 13 / 5 = 2.6 88.8%

16K 9.05 / 4.22 = 2.14 (*) 14 / 5 = 2.8 76.4%

8K 8.21 / 4.71 = 1.74 (*) 14 / 5 = 2.8 62.1%

– α (β) = real (ideal) speedup of clOpenCL over OpenCL

– (*) ≈ speedup values of slide 23

24 / 25



Context clOpenCL Evaluation Conclusions

Conclusions and Future Work

clOpenCL enables the execution of cluster-wide OpenCL
applications in commodity HW and without special privileges

porting OpenCL applications to clOpenCL is straightforward
no source changes; just link with clOpenCL + Open-MX libs

benchmark results show fair performance and good scalability
also allowed to identify different combinations of devices with
the same performance level, which may be used in alternative

future work
expand the number of OpenCL primitives supported
conformance/performance tests (Rodinia, Vienna CL, SHOC)
BSD sockets support (less performance, better portability)

ongoing work (almost complete)

source code: ongoing work (available on request)

Thank you ! Questions ? Remarks ?

25 / 25


	body
	Context
	clOpenCL
	Evaluation
	Conclusions


