Capítulo V - Interpolação Polinomial

1. Interpolação

Considere o seguinte conjunto de dados:

$$x: x_0 \quad x_1 \quad \cdots \quad x_m$$

 $y: y_0 \quad y_1 \quad \cdots \quad y_m$

Estes podem resultar de uma sequência de medidas experimentais, onde *x* pode representar o tempo ou a temperatura e *y* pode representar a distância ou a pressão. Ou então outras medidas provenientes dos mais diversos campos.

Com estes dados é possível efectuar vários tipos de tratamento no sentido de obter mais informações acerca de uma possível função subjacente $f(x_i) = y_i$, $i = 0,1,\cdots,m$. Podemos querer inferir o valor dos dados entre os pontos dados, ou fazer uma previsão dos valores para além do intervalo de dados disponíveis. Se os dados representarem uma função subjacente, poderemos querer aproximar a sua derivada ou integral, ou avaliá-la rapidamente para um dado argumento.

Por todas estas razões é importante poder representar esta função discreta (dados y) por uma outra função, relativamente simples, que permita a sua fácil manipulação. No Capítulo 5, vimos já uma maneira de o fazer, nomeadamente ajustando uma função aos dados através do método dos mínimos quadrados. Neste Capítulo vamos adoptar uma aproximação semelhante, mas para além de impor que a função se ajuste à tendência dos dados, vamos também impor que a função passe pelos pontos dados.

Em geral, o problema de interpolação unidimensional mais simples é da seguinte forma: dados os seguintes pontos

$$(x_i, y_i), i = 0, 1, \dots, m,$$

com $x_0 < x_1 < \dots < x_m$, procuramos a função $f: \mathbb{R} \to \mathbb{R}$ tal que

$$f(x_i) = y_i, \quad i = 0, 1, \dots, m$$
.

Designamos f por função *interpolante*. Por vezes, em problemas mais complicados, são impostas condições adicionais para determinar f(x), tais como a inclinação, a monotonia, a convexidade em determinados pontos. Neste texto vamos limitar-nos aos casos mais simples apenas.

2. Existência e unicidade da função interpoladora.

A questão da existência e da unicidade de uma função interpolante depende do número de parâmetros a determinar nessa função e do número de pontos dados para ajustar. Se o número de parâmetros é pequeno, então a função interpolante não existe; se existir um grande número de parâmetros a função não será única. A partir de agora analisamos estas situações com mais detalhe.

Para um determinado conjunto de dados (x_i, y_i) , $i = 0, 1, \dots, m$ a função interpolante é escolhida a partir do espaço das funções geradas pela combinação linear de uma base de funções $\phi_0(x), \dots, \phi_n(x)$, i.e.

$$f(x) = \alpha_0 \phi_0(x) + \alpha_1 \phi_1(x) + \dots + \alpha_n \phi_n(x),$$

em que os parâmetros α_j têm de ser determinados. Requerendo que f interpole os pontos dados (x_i, y_i) significa que

$$f(x_i) = \alpha_0 \phi_0(x_i) + \alpha_1 \phi_1(x_i) + \dots + \alpha_n \phi_n(x_i) = y_i, \quad i = 0, 1, \dots, m$$

que corresponde a um sistema de equações lineares com n incógnitas e m equações que podemos escrever na forma matricial como

$$\begin{bmatrix} \phi_0(x_0) & \phi_1(x_0) & \cdots & \phi_n(x_0) \\ \phi_0(x_1) & \phi_1(x_1) & \cdots & \phi_n(x_1) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(x_m) & \phi_1(x_m) & \cdots & \phi_n(x_m) \end{bmatrix} \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_m \end{bmatrix} \iff A\alpha = y ,$$

em que as $(m+1)\times(n+1)$ entradas da matriz base A são dadas por $a_{ij}=\phi_{j-1}(x_{i-1}), i=1,\cdots,m+1, j=1,\cdots,n+1$ (i.e., a_{ij} é o valor da $(j-1)^{\text{esima}}$ função da base calculado no ponto (i-1)). O segundo membro do sistema y é composto pelos m+1 valores dados y_i . E os n+1 componentes do vector α , são as incógnitas α_j correspondentes aos parâmetros a determinar.

Como é sabido da Álgebra Linear, para que este sistema tenha solução e essa solução seja única, a dimensão n da base de funções tem de ser igual ao número de pontos dados m e a matriz A tem de ser não singular (A admite inversa).

A base de funções escolhida é fundamental para o cálculo da função interpolante. Pois esta define a sensibilidade dos parâmetros α a algumas perturbações nos dados (condicionamento do sistema $A\alpha=y$), influencia o número de operações para resolver o sistema e a facilidade com que a função interpolante é obtida ou manipulada. Neste curso limitar-nos-emos apenas a bases de funções constituídas exclusivamente por polinómios (interpolação polinomial).

3. Interpolação polinomial

A interpolação mais simples e mais comum usa polinómios. Vamos designar P_k como sendo o espaço vectorial de todos os polinómios de grau maior ou igual a k, com $k \ge 0$. Este espaço é gerado por uma base de funções de dimensão k+1.

3.1 Base monómica (canónica)

Para interpolar n+1 pontos dados (ou tabelados), escolhemos k=n de forma a que a dimensão do espaço vectorial coincida com o número de dados. A base mais natural para P_n , o espaço vectorial dos polinómios de grau menor ou igual a n, é composta pelos n+1 primeiros monómios

$$\phi_j(x) = x^j, \quad j = 0, 1, \dots, n,$$

para a qual um dado polinómio $p_n \in P_n$ tem a forma

$$p_n(x) = \alpha_0 + \alpha_1 x + \dots + \alpha_n x^n.$$

Na base monómica, o vector α dos coeficientes do polinómio interpolador dos pontos (x_i, y_i) , $i = 0, 1, \dots, n$, é obtido através da resolução do seguinte sistema linear

$$A\alpha = \begin{bmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{bmatrix} \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{bmatrix} = y.$$

Uma matriz com a forma da matriz A, cujas colunas são potências sucessivas de uma determinada variável x, é chamada matriz de Vandermonde. Facilmente se prova que a matriz de Vandermonde é não singular desde que os valores de x_i sejam todos distintos e, consequentemente, que o polinómio interpolador existe.

Exemplo 1 – Base monómica. Para ilustrar o polinómio interpolador com base monómica, vamos determinar o polinómio de grau dois que interpola os seguintes três pontos (-2,-27), (0,-1), (1,0). Existe um único polinómio

$$p_2(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2$$

de grau 2 que interpola três pontos $(x_0, y_0), (x_1, y_1), (x_2, y_2)$. Com a base monómica os coeficientes do polinómio interpolador são dados pela resolução do seguinte sistema linear

$$A\alpha = \begin{bmatrix} 1 & x_0 & x_0^2 \\ 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \end{bmatrix} \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ y_2 \end{bmatrix} = y.$$

Para o presente conjunto de dados o sistema é

$$\begin{bmatrix} 1 & -2 & 4 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} -27 \\ -1 \\ 0 \end{bmatrix}.$$

Resolvendo este sistema pelo método de eliminação de Gauss obtemos a solução $\alpha = \begin{bmatrix} -1 & 5 & -4 \end{bmatrix}^T$, sendo o polinómio interpolador dado por

$$p_2(x) = -1 + 5x - 4x^2.$$

Embora a teoria diga que a *matriz de Vandermonde* seja não singular, na prática à medida que o *n* aumenta as colunas desta matriz tornam-se cada vez mais linearmente dependentes e consequentemente a matriz *A* cada vez mais singular. Pelo que para problemas de grande dimensão, a resolução deste sistema se torna cada vez mais mal condicionado (propaga mais facilmente os erros introduzidos como por exemplo os erros de arredondamento) e consequentemente é mais difícil de resolver, exigindo mais operações (como por exemplo pivotagens no método de Gauss ou iterações se for utilizado um método iterativo).

3.2 Base de Lagrange

Para um dado conjunto de pontos (x_i, y_i) , $i = 0, 1, \dots, n$, as funções da base de *Lagrange* para P_n são iguais a

$$\ell_{j}(x) = \frac{\prod_{k=0, k\neq j}^{n} (x - x_{k})}{\prod_{k=0, k\neq j}^{n} (x_{j} - x_{k})}, \quad j = 0, 1, \dots, n.$$

Esta definição indica que $\ell_i(x)$ é um polinómio de grau n e que

$$\ell_j(x) = \begin{cases} 1 & \text{se } i = j \\ 0 & \text{se } i \neq j \end{cases} \text{ para } i, j = 0, 1, \dots, n$$

indicando que para esta base a matriz dos coeficientes do sistema linear $A\alpha = y$ é a matriz identidade (A = I) e consequentemente $\alpha = y$. Assim, se utilizarmos a base de Lagrange para interpolar os pontos (x_i, y_i) , o polinómio interpolador será dado por

$$p_n(x) = y_0 \ell_0(x) + y_1 \ell_1(x) + \dots + y_n \ell_n(x)$$
.

Exemplo 2 – Base de Lagrange. Para ilustrar o polinómio interpolador de *Lagrange*, vamos determinar o polinómio de grau dois que interpola os mesmos três pontos do Exemplo 1. A forma do polinómio de *Lagrange* de grau dois que interpola três pontos $(x_0, y_0), (x_1, y_1), (x_2, y_2)$ é

$$p_2(x) = y_0 \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} + y_1 \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} + y_2 \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}.$$

Para os dados do Exemplo 1, esta formula resulta em

$$\begin{split} p_2(x) &= -27 \frac{(x-0)(x-1)}{(-2-0)(-2-1)} + (-1) \frac{(x-(-2))(x-1)}{(0-(-2))(0-1)} + 0 \frac{(x-(-2))(x-0)}{(1-(-2))(1-0)} \\ &= -27 \frac{x(x-1)}{6} + \frac{(x+2)(x-1)}{2}. \end{split}$$

Dependendo do uso que lhe é destinado, o valor do polinómio interpolador pode ser calculado para qualquer argumento x, ou então pode ser simplificado para o mesmo resultado obtido no Exemplo 1 usando a base monómica (tal como esperado pois o polinómio interpolador é único).

Comparado com o polinómio interpolador na base monómica, o polinómio de *Lagrange* é melhor condicionado pois as funções da base correm menos o risco de se tornarem linearmente dependentes à medida que *n* aumenta. Contudo o cálculo do valor do polinómio de *Lagrange* para um dado argumento *x* exige mais operações comparado com a sua representação na base monómica.

3.3 Base de Newton

Para um dado conjunto de pontos (x_i, y_i) , $i = 0, 1, \dots, n$, as funções da base de *Newton* para P_n são iguais a

$$\pi_j(x) = \prod_{k=0}^{j-1} (x - x_k), \quad j = 0, 1, \dots, n,$$

em que consideramos o valor do produto igual a 1 quando os limites do produtório o tornem vazio. Na base de Newton, um polinómio tem a forma

$$p_n(x) = \alpha_0 + \alpha_1(x - x_0) + \alpha_2(x - x_0)(x - x_1) + \dots + \alpha_n(x - x_0)(x - x_1) \cdot \dots \cdot (x - x_n).$$

Através desta definição, verificamos que $\pi_j(x_i) = 0$ se i < j, pelo que a matriz base A, em que $a_{ij} = \pi_{j-1}(x_{i-1})$, $i, j = 1, 2, \cdots, n$, é triangular inferior (entradas nulas acima da diagonal principal). Consequentemente, a solução α do sistema $A\alpha = y$, que determina os coeficientes da base de funções que integram a função interpolante, pode ser calculada por substituição directa. Este aspecto faz com que o polinómio interpolador de Newton seja calculado num relativamente pequeno número de operação (proporcional a n^2).

Exemplo 3 – Base de Newton. Para ilustrar o polinómio interpolador de Newton, vamos determinar o polinómio de grau dois que interpola os mesmos três pontos do Exemplo 1. Com a base de Newton, obtemos o seguinte sistema linear triangular inferior

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & x_1 - x_0 & 0 \\ 1 & x_2 - x_0 & (x_2 - x_0)(x_2 - x_1) \end{bmatrix} \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ y_2 \end{bmatrix}.$$

Para os dados do Exemplo 1, este sistema é igual a

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 3 & 3 \end{bmatrix} \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} -27 \\ -1 \\ 0 \end{bmatrix},$$

cuja solução, obtida por substituição directa, é $\alpha = \begin{bmatrix} -27 & 13 & -4 \end{bmatrix}^T$. O polinómio interpolador é então dado por

$$p_2(x) = -27 + 13(x+2) - 4(x+2)x$$
,

que pode ser reduzido ao mesmo polinómio já obtido por qualquer um dos métodos anteriores.

Uma via alternativa para obter os coeficientes α_j do polinómio interpolador de Newton consiste em calcular as *diferenças divididas*. Estas quantidades são usualmente representadas por f[] e são definidas recursivamente pela formula

$$f[x_0, x_1, \dots, x_k] = \frac{f[x_1, x_2, \dots, x_k] - f[x_0, x_1, \dots, x_{k-1}]}{x_k - x_1},$$

em que a recorrência começa com $f[x_k] = y_k$, $k = 0, 1, \dots, n$. Segue-se que o coeficiente da j^{esima} função da base de Newton será dado por $\alpha_j = f[x_0, x_1, \dots, x_j]$.

Exemplo 4 – Diferenças divididas. Ilustrar as diferenças divididas utilizando esta via para determinar o polinómio interpolador de Newton de grau dois que interpola os mesmos três pontos dos exemplos anteriores.

$$f[x_0] = y_0 = -27, \quad f[x_1] = y_1 = -1, \quad f[x_2] = y_2 = 0,$$

$$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0} = \frac{-1 - (-27)}{0 - (-2)} = 13,$$

$$f[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_2 - x_1} = \frac{0 - (-1)}{1 - 0} = 1,$$

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0} = \frac{1 - 13}{1 - (-2)} = -4.$$

O polinómio de Newton é igual a

$$p_{2}(x) = f\left[x_{0}\right]\pi_{0}(x) + f\left[x_{0}, x_{1}\right]\pi_{1}(x) + f\left[x_{0}, x_{1}, x_{2}\right]\pi_{2}(x)$$

$$= f\left[x_{0}\right] + f\left[x_{0}, x_{1}\right](x - x_{0}) + f\left[x_{0}, x_{1}, x_{2}\right](x - x_{0})(x - x_{1})$$

$$= -27 + 13(x + 2) - 4(x + 2)x.$$

4. Problemas propostos.

- a. Dados os seguintes três pontos (-1,1), (0,0), (1,1), determine o polinómio interpolador de grau dois:
 - 1) Utilizando a base monómica
 - 2) Utilizando a base de Lagrange
 - 3) Utilizando a base de Newton
 - 4) Estime os valores de f(-0,25) e f(0,5).

Mostre que as três representações originam o mesmo polinómio.

- b. Considere os seguintes dados $\begin{pmatrix} x & 1 & 2 & 3 & 4 \\ y & 11 & 29 & 65 & 125 \end{pmatrix}$.
 - 1) Determine o polinómio interpolador utilizando a base monómica.
 - 2) Determine o polinómio interpolador de Lagrange.
 - 3) Determine o polinómio interpolador de Newton.
 - 4) Estime o valor de f(3,5).
- c. Seja $f(x) = 3xe^x 2e^x$. Aproxime f(1,03) usando o polinómio interpolador de Lagrange de grau menor ou igual a dois, considerando $x_0 = 1$, $x_1 = 1,05$, $x_2 = 1,07$.
- d. Considerando os seguintes dados

queremos interpolar o valor da função para x = 27,5. Construa a tabela das diferenças divididas e aproxime o valor de f(27,5), usando o polinómio interpolador de Newton.

e. Considerando os seguintes dados

- 1) Construa a tabela das diferenças divididas.
- 2) Com base na tabela calculada, aproxime f(0,05) e f(0,65), usando o polinómio interpolador de Newton das diferenças divididas convenientes.
- f. Considerando os seguintes dados

- 1) Construa a tabela das diferenças divididas.
- 2) Com base na tabela calculada, aproxime f(-1,5) e f(5), usando o polinómio interpolador de Newton das diferenças divididas convenientes.

5. Bibligrafia.

A exposição efectuada neste Capítulo é essencialmente baseada no Capítulo 7 do livro:

Michael T. Heath. *Scientific Computing an Introductory Survey*. McGraw-Hill, New York, 2002 (http://www.cse.uiuc.edu/heath/scicomp/).