Numerical Methods Library for OCTAVE

INTERNSHIP'S REPORT

Lilian Calvet

October 21, 2008



Contents

1 Introduction 2
2 Schedule 2
2.1 Anexample of a function : PDE_HEAT_EXP .. : 4
2.2 What does the script calling PDE_POISSON_ EXP produce? ......... 3
2.3 AbouttheUsersguide . .. .. .. . .. .. . . . .. .. ..., 5
3 Library’s content 7
3.1 Linearsystems . . . . . . .. e e e 7
3.1.1 Jacobi . . ... 7
3.1.2 Gauss-Seidel . . . ... 8
3.1.3 MINRES . . . . . . . e 8
3.14 GMRES. . . . . e 8
3.1.5 Already existing functions about linearsolver . . .. ... ... .... 9
3.2 Linearleastsquares . . . . . . . . . e e e e 9
3.2.1 Normalequation . . . .. .. .. .. . ... 9
3.2.2 Householder . .. .. ... . .. ... 9
3.23 SVD .. e 10
3.3 Nonlinearequations . . . . . . . . . . . . 10
3.3.1 Bisection . . . . . .. 10
3.3.2 Fixed-point . . . . . .. 11
3.3.3 Newton-Raphson . . . . . . . . . .. 11
3.34 Secant. . . . . .. e 12
3.3.5 Newton’s method for systems of nonlinear equations. .. .. . . .. ... 12
3.4 Interpolation. . . . . . .. e e e e 13
3.41 Monomialbasis. . . . .. ... ... .. 31
3.4.2 Lagrangeinterpolation . . . . . . ... . ... e 13
3.4.3 Newtoninterpolation . . . . . . ... ... ... . ... ... ... 13
3.5 Numericalintegration . . . . . . . . . .. ... ... 14
3.5.1 Trapezoid'srule. . . . . . . . . . .. .. e 14
3.5.2 Simpsonsrule . ... ... e 41
3.5.3 Newton-Cotes’'rule . . . . .. ... .. ... .. .. ... 14
3.6 Eigenvalueproblems . . . . . . . ... 15
3.6.1 Poweriteration . . . . . . .. ... 15
3.6.2 Inversemethod . . .. .. .. . . . ... 51
3.6.3 Rayleigh quotientiteration . . . . . . .. ... ... ... ... ..., 15
3.6.4 Orthogonaliteration . . . ... ... .. ... . .. .. .. .. ... 16
3.6.5 QRiteration. . . . . . . . ... 6 1
3.7 Optimization . . . . . . . . . . . e e 17
3.7.1 Newton'smethod . . . . .. ... ... . .. ... . 71
3.7.2 Conjugate gradientmethod . . . . . .. ... .. ... ... ... . .. 17



3.7.3 Lagrange multipliers . . . . . . ... . L 18

3.8 Initial value problems for Ordinary flierential Equations . . . . . ... ... ... 18
3.8.1 Euler . . . . 18
3.8.2 ImplicitEuler . . . . . ... . 19
3.8.3 ModifiedEuler . . . . . . . .. 19
3.8.4 Fourth-order Rounge-Kutta. . . . . . . ... ... ... .. ... ... 19
3.8.5 Fourth-order predictor . . . . .. .. ... ... . 19
3.9 Boundary value problems for Ordinanfférential Equations . . . . . . ... ... 20
3.9.1 Shootingmethod . . . . .. ... ... . .. ... .. 02
3.9.2 Finite diterencemethod . . . . . ... .. ... .. ... L. 20
3.9.3 Colocationmethod . . . . ... ... .. .. ... 12
3.10 Partial Dfferential Equations . . . . . . . . . .. ... Lo 21
3.10.1 Method of lines (for Heatequation) . . ... .............. 21
3.10.2 2-D solver for Advectionequation . . . . . . ... ... ... ... 22
3.10.3 2-D solver for Heatequation . . . . . . . .. .. ... . ... . uuo.. 23
3.10.4 2-D solver for Wave equation . . . . ... ... ... .. .. .. ... 23
3.10.5 2-D solver for the Poisson Equation . . . . ... ... .. ......... 24
4 Conclusion 25
5 How to continue 25



1 Introduction

The Polytechnic Institute of Braganca is pointed as a reterem the scenery of the Portuguese
Polytechnics, due to the results achieved through contisgdorts on a dynamic and qualified
education. | realise an internship this summer 2008 in itthelaatics Department with my super-
visor Carlos Balsa.

| had to execute a Numerical Methods Library for Octave (opaurce) bound to be used by
Bact+2 and Bae-3 students in Mathematics Department. GNU Octave is a lagéHlanguage,
primarily intended for numerical computations. It provsda convenient command line inter-
face for solving linear and nonlinear problems numerigalyd for performing other numerical
experiments using a language that is mostly compatible Miftiab. It may also be used as a
batch-oriented language.

The library’s content allows students to access to a largmedeof most useful functions in
scientific programming. It can also be used as a teachingosupyth its Documentation and
User’'s Guide. In addition, Mr Carlos Balsa wanted to assodlageproject with an interactive
content and a simulation program realised by my colleagagdsit Chatre.

2 Schedule

In this section | present how | managed my work and thigedent tasks executed :
1. What is Octave ? How to program functions in Octave ?...

2. Listing of what functions already exist in Octave. What greir name? How do we use
them ?...

3. Decision about functions’ name, variables’ name, HElappearence...

4. Implementation of each functions from the less complekéamost complex functions. For
each function | realised several scripts to check theichtgli

5. Realization or complement of the functions’documentatio
6. Implementation of functions to write XML files.

7. Discussion with Mr Chatre Floriant and Mr Carlos Balsa aboduatwesults are interesting
to display in the simulation program.

8. Creation of the User’'s Guide.

2.1 Anexample of a function : PDE_HEAT EXP ...

Here there is an example of a function (pde_heat_exp’ éoathin PDE) and its description :



function [u, x, t] = pde_heat_expin, dx, k, dt, ¢, bound_fun, EIS'HBHWURE

PDE_HEAT_EXP solwves the heat equation with the explicit method.

[T, ¥, U] = PDE_HEAT_EXP(N, DX, K, DT, C, F, ALPHA, BETA) sclves the heat
equation D U/DT = C 0 2U/D%°2 with the explicit method on [©,1]1x[0, 1].
Initial condition 1s U(G, %) = F and boundary conditions are Uit,0) = ALPHA
arnd Ult,1) = beta. € 15 a positive constant. N is the number of space
integration intervals and K is the number of time-integration interwvals. DX

iz the size of 3 space integration interval and DT 1s the s1 é
time-integration intervals. ﬁE CRIFTIDN

Parameters

M rumber of space integration intervals.
DX size of a space integration interval.
MT rumber of time-integration interwvals.
DT size of time-integration intervals.

F initial condition Ui, X) = FiX).

C positive constant.

Returns

T rid of NT interwvals.

X gr'id of NX interwvals. INPUTS

] solution array. GUTP UTS

of of of of of of of oF of oF oF of oF P &F oF oF oF oF oF oF oF P

c

zerosin+2, k+l);
de®(0: n+l) ',

de*io: k),

+

% Initial conditieon
ull:n+2,1) = fevalibound_fun, xi;

5 = c¥dtfdet 2,

A = sparseldiag((l-2*s)*onesin, 1) )+diag(s*ones(n-1, 1), -1) +diagls*onesin-1,1), 111];
v = zerosin,1];

vil) = s*alpha;

vin) = s*heta;

k = k+1;

for m= 2:k

ull, ml = alphs;
uin+z, m) = beta;
ul2:n+l, m) = A*ulZ:n+l, m-1)+v; CODE

end

Figure 1: Function description with PDE_HEAT_EXP

2.2 What does the script calling PDE_POISSON_EXP produce ?

Next there is the execution of the script allowing me to \atiédthe function arfdr showing how
to use the function.
What is the the result of the script 'main’ in PDE_Poisson agiqun ?



Fichier Edition Affichage Terminal Cnglets Aide

octave:3>
octave:3=

octave:3>

octave:3=

octave:3>

octave:3=

octave:3> pwd

ans = /home/lilian4a/Desktop/stage/Octave library/Partial differential equations/PDE_Poisson_equation
octave: 4=

octave:4>

octave:4= main

Example :
function res = f(x,y)
res = 8*pi*pi*sin(2*pi*x)*cos(2*pi*y);
endfunction
[u, %, y] = poissonfd(®, 1, @, 1, 20, 20, @f, @bound);

mesh(x,y,u);

err = 0.0088787
octave:5> |

Figure 2: What do we obtain with the script executing PDE_FBQS_EXP ?

Solution computed by poiEeonfd fior Poeaon equation

Figure 3: Result of the script executing PDE_POISSON_EXP



2.3 About the User’s guide

Here is the content of the User’s guide :

Table des matiéres

1 How to install and use NMLibforOctave 3
LA O WIBEONE & co sl Sorcaion sy ol Sl Baud Sl DN Sl 3

| 0 B 51 111 e i i O e - o S e B < 3

2 About the NMLibfor(Octave’s content 3
3 TFunctions’ description and use 5
e ) R ] T L (o R o Sl S T e o B 5
Ll JEEOBE: i sliia pioice G B BOENE BT RMRT BRI R Bide 5

312 Gawss-Seidel . ... L e e e 5

ALE  MINKER . oo cvpsrrspiriss i el Sepsranisnim somk =iy i)

304 GMEBES o0 saun e fia i soul sl SMa s A ant s 6

315 Already existing functions about linear solver . . . . . . . . .. .. .. 7

3.1.6  What is hidden behind the command ™" . . . . . .. ... ... . ... 7

32 LinearleastsguUares . . . . . o o 0o v bbb b b e e e e e e e e e e e e e e 5
320 Nomal equalion . . . . .00 o v bbbt e e e e e e ]

320 Howseholer, oo corcwsneasy il Sibd S duinoasy SaE 2l B

LT BVIY & cnn ssn e i ml oSl et WA A s ann au 9

2.3 'Nonlitehr equatlons i Sl Srriiiid Sl S SRR Sl sl 9
3L BRSO o5 clhi sl i i R B Rl e e Rl R 9

332 Fixed-point . . . . . L0 oii e e e e e e e e e e e Lo

333 Newton-Raphson ., .. . ... v v v i it ce v e e e L0

134 Becapb: -sov st ava iiiarnd oSl et ANEa R AR ann au L1

335 MNewton's method for systems of nonlinear equations . . . . .. . . .. L1

¥ TREpOLII . 0 i rida Rl e A ROE BB EameE e B Bk 12
341 Monomial basis . . . . ..o Lo Lo e 12

342 Laecranee interoolation . . .. . . o ..o e o e s e o a 12

Figure 4: A part of the Table of Contents

In the each subsection of 'Functions description and usaetis an introduction which can
describes application domain, to which are destinated eahions...



Returns

LAMBEDA N-vector containing eigenvalues of A.
V N associated eigenvectors.

NBIT number of iteration to the solution.

3.7 Optimization

We now turn to the problem of determining extreme values, or optimum values (maxima
or minima), that a given function has on a given domain. More formally, given a function
S BY — B and a set 5 © B, we seek ¢ € & such that f attains a minimum on § at X, i.e.,
Jix) £ f(v) for all y € 5. Such a point x is called a minimizer , or simply a minimum, of
. Since a maximum of |/ is a minimum of §, it suffices to consider only minimization. The
objective function, [, may be linear or nonlinear, and it is usually assumed to be differentiable.
The constraint set § is usually defined by a system of equations or inequalities, or both, that
may be linear or nonlinear. A point x € § that satisfies the constraints is called a feasible point.
If § = ", then the problem is unconstrained . General continuous optimization problems have
the form

min  f{x) subjectto  g(x) =0 and i(x) <0, (9

where [t B" — B, g: B" — B" and & : " — R* | Optimization problems are classified
by the properties of the functions involved. For example, if f, g, and i are all linear, then we
have a linear programming problem. If any of the functions involved are nonlinear. then we
have a nonlinear programming problem. Important subclasses of the latter include problems
with a nonlinear objective function and linear constraints, or a nonlinear objective function and
no constraints.

Newton's method and Conjugate Gradient's method are directly used in unconstrained op-
timization and Lagrange multipliers are used in constrained oplimization.

3.7.1 Newton's method

[X, FX, NBIT] = OPT_NEWION(FUN, GFUN, HFUN, X6, ITMAX, TOL) computed the

it wm At mnrimn mdl alha T L cae dman sadalh abhn cacd e masbhad camwman - WR Thsam o de & mam  FOTITIAT

Figure 5: An example with 'Optimization’




Moreover | add some informations which are really necesganyse the function...with the
symbol<.

@Consider the minimization of a nonlinear function subject to nonlinear equality constraints,
min f{x)subjectto glx)= 0, (14)
X

—FEand g :B"— ", withm < n.

[Raar

where f: R
The Lagrangiun function, L : — [, is given by

L. = flo+ 470, (15)
whose gradient and Hessian are given by

L_\[.'L'.AJ‘ - [‘?_I'[.r; + Jj'[.a)l

VDG = Lylx, A) glxl

(16)

where J, is the Jacobian matrix of g and . is an m-vector of Lagrange multipliers.

Together, the necessary condition and the requirement of feasibility say that we are looking
for a critical point of the Lagrangian function, which is expressed by the system of nonlinear
equations

Figure 6: Remark about Lagrange multipliers’ method

3 Library’s content

3.1 Linear systems
3.1.1 Jacobi

[X, RES, NBIT] = JACOBI(A,B,X0,ITMAX,TOL) computes the solution of the linear system
A*X = B with the Jacobi’s method. If JACOBI fails to converge afteg thaximum number of
iterations or halts for any reason, a message is displayed.

Parameters

A a square matrix.

B right hand side vector.

X0 initial point.

ITMAX maximum number of iteration.
TOL tolerance on the stopping criterion.

Returns

X computed solution.

RES norm of the residual in X solution.

NBIT number of iterations to compute X solution.



3.1.2 Gauss-Seidel

[X, RES, NBIT] = GAUSS_SEIDEL(A,B,X0,ITMAX,TOL) computes the solution of the linear
system A*X = B with the Gauss-Seidel's method. If GAUSS_SEIDEL fails tmeerge after the
maximum number of iterations or halts for any reason, a ngessadisplayed.

Parameters

A a square matrix.

B right hand side vector.

X0 initial point.

ITMAX maximum number of iteration.
TOL tolerance on the stopping criterion.

Returns

X computed solution.

RES norm of the residual in X solution.

NBIT number of iterations to compute X solution.

3.1.3 MINRES

[X,FLAG,RELRES,ITN,RESVEC] = MINRES(A,B,RTOL,MAXIT) solves the linear system
of equations A*X= B by means MINRES iterative method.

Parameters

A square (preferably sparse) matrix. In principle A showdsigmmetric.
B right hand side vector.

TOL relative tolerance for the residual error.

MAXIT maximum allowable number of iterations.

X0 initial guess.

Returns

X computed approximation to the solution.

RELRES ratio of the final residual to its initial value, measlirethe Euclidean norm.
ITN actual number of iterations performed.

RESVEC describes the convergence history of the method.

3.1.4 GMRES

[X, NBIT, BCK_ER, FLAG] = GMRES(A,B,X0,ITMAX,M,TOL,M1,M2,LOCATION) at-
tempts to solve the system of linear equations A*b for x. The n-by-n cofficient matrix A
must be square and should be large and sparse. The colunon Bettust have length n. If GM-
RES fails to converge after the maximum number of iteratianisadts for any reason, a message
is displayed. GMRES restarts all m-iterations.



Parameters

A a square matrix.

B right hand side vector.

X0 initial guess.

ITMAX maximum number of iteration.

M GMRES restarts all m-iterations.

TOL tolerance on the stopping criterion.

M1,M2 preconditionners

LOCATION preconditionners’ location : if left then locatied else right and locatic2.

Returns

X computed solution.

NBIT number of iterations to compute X solution.

BCK_ER describes the convergence history of the method.
FLAG if the method converges then FLAG else FLAG=-1.

3.1.5 Already existing functions about linear solver

It already exists function to solve linear systems in Octawe have particularly the Conjugate
Gradient methogbcg, the Cholesky factorizatiochol and finally LU factorizatioriu.

3.2 Linear least squares
3.2.1 Normal equation

[X, RES] = NORMALEQ(A,B) computes the solution of linear least squares problem rarm{(A*X-
B,2)) solving associated normal equation A*A*X A*B.

Parameters

A a matrix.

B right hand side vector.
Returns

X computed solution.
RES value of norm(A*X-B) with X solution computed.

3.2.2 Householder

[X, RES] =LLS_HQR(A,B) computes the solution of linear least squares problem rarmf{(A*Xx-
B,2)) using Householder QR.

Parameters

10



A a matrix.
B right hand side vector.

Returns
X computed solution.
RES value of norm(A*X-B) with X solution computed.

3.2.3 SVD

[X, RES] = SVD_LEAST_SQUARES(A,B)computes the solution of linear least squares prob-
lem min(norm(A*X-B,2)) using the singular value decompmsitof A.

Parameters
A a matrix.
B right hand side vector.

Returns
X computed solution.
RES value of norm(A*X-B) with X solution computed.

3.3 Nonlinear equations
3.3.1 Bisection

X = BISECTION(FUN,A,B,ITMAX,TOL) triesto find a zero X of the continuous function FUN
in the interval [A, B] using the bisection method. FUN acceaptsl scalar input x and returns a
real scalar value. If the search fails an error messageptagisd. FUN can also be an inline object.

[X, RES, NBIT] = BISECTION(FUN,A,B,ITMAX,TOL) returns the value of the resialuin X
solution and the iteration number at which the solution wasguted.

Parameters

FUN evaluated function.

A,B [A,B] interval where the solution is computed,AB and sign(FUN(A))= - sign(FUN(B)).
ITMAX maximal number of iterations.

TOL tolerance on the stopping criterion.

Returns

X computed solution.

NBIT number of iterations to find the solution.
RES value of the residual in X solution.

11



3.3.2 Fixed-point

X =FIXED_POINT(FUN,XO0,ITMAX,TOL) solves the scalar nonlinear equation such that 'FUN(X)
== X" with FUN continuous function. FUN accepts real scalaruhX and returns a real scalar
value. If the search fails an error message is displayed. €&i\also be inline objects.

[X, RES, NBIT] = FIXED_POINT(FUN,XO0,ITMAX,TOL) returns the norm of the nekial in
X solution and the iteration number at which the solution e@a®puted.

Parameters

FUN evaluated function.

DFUN f’s derivate.

X0 initial point.

ITMAX maximal number of iteration.
TOL tolerance on the stopping criterion.

Returns

X computed solution.

RES norm of the residual FUN(X)-X in X solution.
NBIT number of iterations to find the solution.

3.3.3 Newton-Raphson

X = NLE_NEWTRAPH(FUN,DFUN,X0,ITMAX,TOL) tries to find a zero X of the continuous
and diferentiable function FUN nearest to X0 using the Newton-Rapmsethod. FUN and its
derivate DFUN accept real scalar input x and returns a reddsealue. If the search fails an error
message is displayed. FUN and DFUN can also be inline objects

[X, RES, NBIT] = NLE_NEWTRAPH(FUN,DFUN,X0,ITMAX,TOL) returns the value oh¢
residual in X solution and the iteration number at which tbkeison was computed.

Parameters

FUN evaluated function.

DFUN f’s derivate.

X0 initial point.

ITMAX maximal number of iterations.
TOL tolerance on the stopping criterion.

Returns

X computed solution.

RES value of the residual in x solution.

NBIT number of iterations to find the solution.

12



3.3.4 Secant

X = SECANT(FUN,X1,X2,ITMAX,TOL) tries to find a zero X of the continuous function FUN
using the secant method with starting points X1, X2. FUN ptxeeal scalar input X and returns a
real scalar value. If the search fails an error messageptagisd. FUN can also be an inline object.

[X, RES, NBIT] = SECANT(FUN,X1,X2,ITMAX,TOL) returns the value of the resia in X
solution and the iteration number at which the solution wampguted.

Parameters

FUN evaluated function.

X1,X2 starting points.

ITMAX maximal number of iterations.
TOL tolerance on the stopping criterion.

Returns

X computed solution.

RES value of the residual in X solution.

NBIT number of iterations to find the solution.

3.3.5 Newton’s method for systems of nonlinear equations

X =NLE_NEWTSYS(FFUN,JFUN,XO0,ITMAX,TOL) tries to find the vector X, zero of a non-
linear system defined in FFUN with jacobian matrix definechia function JFUN, nearest to the
vector XO.

[X, RES, NBIT]=NLE_NEWTSYS(FUN,DFUN,XO0,ITMAX,TOL) returns the norm oféhresid-
ual in X solution and the iteration number at which the solutivas computed.

Parameters

FFUN evaluated function.

JFUN FFUN's jacobian matrix.

X0 initial point.

ITMAX maximal number of iterations.
TOL tolerance on the stopping criterion.

Returns

X computed solution.

RES norm of the residual in X solution.

NBIT number of iterations to find the solution.

13



3.4 Interpolation
3.4.1 Monomial basis

P = ITPOL_MONOM(X,Y,x) computes the monomial basis interpolation of points defimed
x-coordinate X and y-coordinate Y. x can be a real vectotheaw in the solution array P corre-
sponds to a x-coordinate in the vector x.

Parameters

X abscissas of interpolated points.

Y odinates of interpolated points.

x can be a scalar or a vector of values.

Returns
P value of p(x).

3.4.2 Lagrange interpolation

P = LAGRANGE(X,Y,x) computes the polynomial Lagrange interpolation of poirgfnéd by
x-coordinate X and y-coordinate Y. x can be a real vectotheaw in the solution array P corre-
sponds to a x-coordinate in the vector x.

Parameters

X abscissas of interpolated points.

Y odinates of interpolated points.

X can be a scalar or a vector of values.

Returns
P value of P(x).

3.4.3 Newton interpolation

P = ITPOL_NEWT(X,Y,x) computes the polynomial Newton interpolation of points ki by
x-coordinate X and y-coordinate Y. x can be a real vectoheaw in the solution array P corre-
sponds to a x-coordinate in the vector x.

Parameters

X abscissas of interpolated points.

Y odinates of interpolated points.

X can be a scalar or a vector of values.

Returns
P value of p(x).

14



3.5 Numerical integration
3.5.1 Trapezoid's rule

RES = INTE_TRAPEZ(FUN,A,B,N) computes an approximation of the integral of the function
FUN via the trapezoid method (using N equispaced interv&lIN accepts real scalar input x and
returns a real scalar value. FUN can also be an inline object.

Parameters

FUN integrated function.

A,B FUN is integrated on [A,B].
N number of subdivisions.

Returns
RES result of integration.

3.5.2 Simpson’s rule

RES=INTE_SIMPSON(FUN,A,B,N) computes an approximation of the integral of the function
FUN via the Simpson method (using N equispaced intervaldN Bccepts real scalar input x and
returns a real scalar value. FUN can also be an inline object.

Parameters

FUN integrated function.

A,B FUN is integrated on [A,B].
N number of subdivisions.

Returns
RES result of integration.

3.5.3 Newton-Cotes' rule

RES = INTE_NEWTCOT(FUN,A,B,N) computes an approximation of the integral of the func-
tion FUN via the Newton-Cotes method (using N equispacedviats). FUN accepts real scalar
input x and returns a real scalar value. FUN can also be areiolbject.

Parameters

FUN integrated function.

A,B FUN is integrated on [A,B].
N number of subdivisions.

Returns RES result of integration.

15



3.6 Eigenvalue problems
3.6.1 Power iteration

[LAMBDA, V, NBIT] = EIG_POWER(A, X0, ITMAX, TOL) computes dominant eigenvalue
and associated eigenvector of A with power iteration metHb&IG_POWER fails to converge
after the maximum number of iterations or halts for any reaaanessage is displayed.

Parameters

A a square matrix.

X0 initial point.

ITMAX maximal number of iterations.
TOL maximum relative error.

Returns

LAMBDA dominant eigenvalue of A.

V associated eigenvector.

NBIT number of iteration to the solution.

3.6.2 Inverse method

[LAMBDA, V, NBIT] = EIG_INVERSE(A, X0, ITMAX, TOL) Compute the smallest eigen-
value of A and associated eigenvector with inverse methb&!G_INVERSE fails to converge
after the maximum number of iterations or halts for any reaaanessage is displayed.

Parameters

A a square matrix.

X0 initial point.

ITMAX maximal number of iterations.
TOL maximum relative error.

Returns

LAMBDA smallest eigenvalue of A.

V associated eigenvector.

NBIT number of iteration to the solution.

3.6.3 Rayleigh quotient iteration

[LAMBDA, V, NBIT] = EIG_RAYLEIGH(A, X0, ITMAX, TOL) computes the best estimate
of an eigenvalue of A associated to an approximate eigeow¥&twith Rayleigh quotient iteration
method. If EIG_RAYLEIGH fails to converge after the maximuommber of iterations or halts for
any reason, a message is displayed. This method can be uaedeierate the convergence of a
method such as power iteration.

16



Parameters

A a square matrix.

X0 initial point corresponding to an approximate eigengect
ITMAX maximal number of iterations.

TOL maximum relative error.

Returns

LAMBDA the best estimate for the corresponding eigenvalue.
V associated eigenvector.

NBIT number of iteration to the solution.

3.6.4 Orthogonal iteration

[LAMBDA, V, NBIT] = EIG_ORTHO(A, X0, ITMAX, TOL) computes Psize(X0,2) eigen-
values and associated eigenvectors of A with orthogonadti method. If EIG_ORTHO fails
to converge after the maximum number of iterations or haltafly reason, a message is displayed.

Parameters

A a square matrix.

X0 arbitrary N x P matrix of rank P, contains X0(1),X0(2X0(P)
linearly independant.

ITMAX maximal number of iterations.

TOL maximum relative error.

Returns

LAMBDA P-vector containing eigenvalues of A.
V P eigenvectors.

NBIT number of iteration to the solution.

3.6.5 QR iteration

[LAMBDA, V, NBIT] = EIG_QR(A, ITMAX, TOL) computes N £size(A)) eigenvalues and
associated eigenvectors of A with orthogonal iterationhmét If EIG_QR fails to converge after
the maximum number of iterations or halts for any reason, ssage is displayed.

Parameters

A (N*N) matrix

ITMAX maximal number of iterations.
TOL maximum relative error.

Returns

LAMBDA N-vector containing eigenvalues of A.
V N associated eigenvectors.

17



NBIT number of iteration to the solution.

3.7 Optimization
3.7.1 Newton’s method

[X, FX, NBIT] = OPT_NEWTON(FUN, GFUN, HFUN, X0, ITMAX, TOL) computed the
minimum of the FUN function with the newton method nearest KQnction GFUN defines the
gradient vector and function HFUN defines the hessian maEWN accepts a real vector input
and return a real vector. FUN, GFUN and HFUN can also be imibject. If OPT_NEWTON fails

to converge after the maximum number of iterations or haltafly reason, a message is displayed.

Parameters

FUN evaluated function.

GFUN FUN'’s gradient function.

HFUN FUN'’s hessian matrix function.
X0 initial point.

ITMAX maximal number of iterations.
TOL tolerance on the stopping criterion.

Returns

X computed solution of min(FUN).

FX value of FUN(X) with X computed solution.
NBIT number of iterations to find the solution.

3.7.2 Conjugate gradient method

[X, FX, NBIT] = OPT_CG(FUN, X0, GFUN, HFUN, TOL, ITMAX) computed the minimum
of the FUN function with the conjugate gradient method nsiax®. Function GFUN defines gra-
dient vector and function HFUN defines hessian matrix. FUdepts a real vector input and return
areal vector. FUN, GFUN and HFUN can also be inline objedDMT_CG fails to converge after
the maximum number of iterations or halts for any reason, ssage is displayed.

Parameters

FUN evaluated function.

X0 initial point.

GFUN FUN'’s gradient function.

HFUN FUN'’s hessian matrix function.
TOL tolerance on the stopping criterion.
ITMAX maximal number of iterations.

Returns
X computed solution of min(FUN).
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FX value of FUN(X) with X computed solution.
NBIT number of iterations to find the solution.

3.7.3 Lagrange multipliers

[XMIN, LAMBDAMIN, FMIN] = OPT_LAGRANGE(F, GRADF, G, JACG, X0) computed
the minimum of the function FUN subject to 'G(>§ 0’ with the lagrange multiplier method.
Function GRADF defines the gradient vector of F. Function Gasgnts equality-constrained and
function JACG defines its jacobian matrix. F and G accept aveetior input and return a real
vector. F, GRADF, G and JACG can also be inline object.

Parameters

F evaluated function.

GRADF F’s gradient function.

G equality-constrained function : 'G(>§ 0'.
X0 initial point.

Returns

XMIN computed solution of min(FUN).

LAMBDAMIN vector of Lagrange multipliers on XMIN.
FX value of FUN(X) with X computed solution.

3.8 Initial value problems for Ordinary di fferential Equations
3.8.1 Euler

[TT,Y] = ODE_EULER(ODEFUN,TSPAN,Y,NH) with TSPAN = [TO, TF] integrates the sys-

tem of diferential equations ¥f(T,Y) from time TO to TF with initial condition YO using the

forward Euler method on an equispaced grid of NH intervalsndiion ODEFUN(T,Y) must re-

turn a column vector corresponding to f(T, Y). Each row in $lo&ution array Y corresponds to a
time returned in the column vector T.

Parameters

ODEFUN integrated function.

TSPAN TSPAN= [TO TF]

Y initial value Y(TO).

NH TT equispaced grid of NH intervals.

Returns

TT equispaced grid of NH intervals.
Y solution array.

19



3.8.2 Implicit Euler

[TT,Y] = ODE_BEULER(ODEFUN,TSPAN,Y,NH) with TSPAN= [TO, TF] integrates the sys-
tem of diferential equations ¥f(T,Y) from time TO to TF with initial condition YO using the
backward Euler method on an equispaced grid of NH intervaisiction ODEFUN(T, Y) must
return a column vector corresponding to f(T, Y). Each rowhia $olution array Y corresponds to
a time returned in the column vector T.

Parameters

ODEFUN integrated function.

TSPAN TSPAN= [TO TF].

Y initial value Y(TO).

NH TT equispaced grid of NH intervals.

Returns
TT equispaced grid of NH intervals.
Y solution array.

3.8.3 Modified Euler

[TT,Y] = ODE_EULER(ODEFUN,TSPAN,Y,NH) with TSPAN = [TO, TF] integrates the sys-
tem of diferential equations Y¥f(T,Y) from time TO to TF with initial condition YO using the
modified Euler method on an equispaced grid of NH intervalsicion ODEFUN(T,Y) must re-
turn a column vector corresponding to f(T, Y). Each row in $oéution array Y corresponds to a
time returned in the column vector T.

Parameters

ODEFUN integrated function.

TSPAN TSPAN= [TO TF].

Y initial value Y(TO).

NH TT equispaced grid of NH intervals.

Returns

TT equispaced grid of NH intervals.
Y solution array.

3.8.4 Fourth-order Rounge-Kutta

It corresponds to ode23,0de45 which already exit in Octave.

3.8.5 Fourth-order predictor

[TT,Y] = ODE_FOP(ODEFUN,TSPAN,Y,NH) with TSPAN = [TO, TF] integrates the system
of differential equations ¥f(T,Y) from time TO to TF with initial condition YO using theourth-
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order predictor scheme on an equispaced grid of NH intervalsction ODEFUN(T,Y) must
return a column vector corresponding to f(T, Y). Each rowhia solution array Y corresponds to
a time returned in the column vector T.

Parameters

ODEFUN integrated function.

TSPAN tspan= [TO TF].

Y initial value Y(TO).

NH TT equispaced grid of NH intervals.

Returns
TT equispaced grid of NH intervals.
Y solution array.

3.9 Boundary value problems for Ordinary differential Equations
3.9.1 Shooting method

[T,Y] = ODE_SHOOT(IVP, A, B, UA, UB) integrates the system offtkrential equations &
f(t,u,u’) from time A to B with boundary conditions u(A) UA and u(B)= UB. Function IVP(t,u,u’)
must return a double column vector [u’, u”] with &f(t,u,u’). Each row in the solution array Y
corresponds to a time returned in the column vector T.

Parameters

IVP integrated function.
ATO.

BTF.

UA initial value Y(TO).
UB final value Y(TF).

Returns
T equispaced grid.
Y solution array.

3.9.2 Finite difference method

[T,Y] = ODE_FINIT_DIFF(RHS, A, B, UA, UB, N) integrates the system offterential equa-
tions u= f(t,u,u’) from time A to B with boundary conditions u(A} UA and u(B)= UB on an
equispaced grid of N intervals. Function RHS(t,u,u’) musame a column vector corresponding
to f(t,u,u’). Each row in the solution array Y corresponds&tome returned in the column vector
T.

Parameters
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RHS integrated function.

ATO.

BTF.

UA initial value Y(TO).

UB final value Y(TF).

N T equispaced grid of N intervals.

Returns
T equispaced grid of N intervals.
Y solution array.

3.9.3 Colocation method

[T,Y] = ODE_COLLOC(RHS, A, B, UA, UB, DN, N) integrates the system offterential equa-
tions u= f(t,u,u’) from time A to B with boundary conditions u(A} UA and u(B)= UB on an
equispaced grid of N intervals. Function RHS(t,u,u’) musame a column vector corresponding
to f(t,u,u’). Each row in the solution array Y correspondstome returned in the column vector
T.

Parameters

RHS integrated function.

ATO.

BTF

UA initial value Y(TO).

UB final value Y(TF).

N T equispaced grid of N intervals.

DN degree of computed polynomial solution.

Returns
T equispaced grid of N intervals.
Y solution array.

3.10 Partial Differential Equations
3.10.1 Method of lines (for Heat equation)

[T, X, U] = PDE_HEAT_LINES(NX, NT, C, F) solves the heat equation DT = C D2 U/DX2
with the method of lines on [0,1]x[0,1]. Initial conditios U(0,X) = F. C is a positive constant.
NX is the number of space integration intervals and NT is tnalper of time-integration intervals.

Parameters

NX X equispaced grid of NX intervals.
NT T equispaced grid of NX intervals.
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C positive constant.

Returns

T equispaced grid of NT intervals.
X equispaced grid of NX intervals.
U solution array.

3.10.2 2-D solver for Advection equation

[T, X, U] = PDE_ADVEC_EXP(N, DX, K, DT, C, F) solves the advection equation DI =
-C D U/DX with the explicit method on [0,1]x[0,1]. Initial conddh is U(0,X)=F. C is a positive
constant. N is the number of space integration interval€aisdhe number of time-integration in-
tervals. DX is the size of a space integration interval and€ifie size of time-integration intervals.

Parameters

NX number of space integration intervals.
DX size of a space integration interval.
NT number of time-integration intervals.
DT size of time-integration intervals.

C positive constant.

F initial condition U(0,X)= F(X).

Returns
T grid of NT intervals.
X grid of NX intervals.
U solution array.

[T, X, U] = PDE_ADVEC_IMP(N, DX, K, DT, C, F) solves the advection equation DI =
-C D U/DX with the implicit method on [0,1]x[0,1]. Initial condibin is U(0,X)= F. C is a positive
constant. N is the number of space integration intervalgaisdhe number of time-integration in-
tervals. DX is the size of a space integration interval and€ifiie size of time-integration intervals.

Parameters

NX number of space integration intervals.
DX size of a space integration interval.
NT number of time-integration intervals.
DT size of time-integration intervals.

C positive constant.

F initial condition U(0,X)= F(X).

Returns

T grid of NT intervals.
X grid of NX intervals.
U solution array.
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3.10.3 2-D solver for Heat equation

[T, X, U] = PDE_HEAT_EXP(N, DX, K, DT, C, F, ALPHA, BETA) solves the heat equation
D U/DT = C D2U/DX2 with the explicit method on [0,1]x[0,1]. Initial condiin is U(0,X) = F
and boundary conditions are U(t8)ALPHA and U(t,1)= beta. C is a positive constant. N is the
number of space integration intervals and K is the numbenw-integration intervals. DX is the
size of a space integration interval and DT is the size ofinbegration intervals.

Parameters

NX number of space integration intervals.
DX size of a space integration interval.
NT number of time-integration intervals.
DT size of time-integration intervals.

F initial condition U(0,X)= F(X).

C positive constant.

Returns
T grid of NT intervals.
X grid of NX intervals.
U solution array.

[T, X, U] = PDE_HEAT _IMP(N, DX, K, DT, C, F, ALPHA, BETA) solves the heat equation
D U/DT = C D2U/DX2 with the implicit method on [0,1]x[0,1]. Initial conddn is U(0,X) = F
and boundary conditions are U(t,8)ALPHA and U(t,1)= beta. C is a positive constant. N is the
number of space integration intervals and K is the numbeanad-integration intervals. DX is the
size of a space integration interval and DT is the size of fimbegration intervals.

Parameters

NX number of space integration intervals.
DX size of a space integration interval.
NT number of time-integration intervals.
DT size of time-integration intervals.

F initial condition U(0,X)= F(X).

C positive constant.

Returns

T grid of NT intervals.
X grid of NX intervals.
U solution array.

3.10.4 2-D solver for Wave equation

[T, X, U] = PDE_WAVE_EXP(N, DX, K, DT, C, F, G, ALPHA, BETA) solves the wave equa-
tion D2U/DT2 = C D2U/DX2 with the explicit method on [0,1]x[0,1]. Initial condlan is U(0,X)
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= F, D U/DT (0,X)= G(X) and boundary conditions are U(t,8)ALPHA and U(t,1)= beta. C
is a positive constant. N is the number of space integratibervals and K is the number of
time-integration intervals. DX is the size of a space iragign interval and DT is the size of time-
integration intervals.

Parameters

NX number of space integration intervals.
DX size of a space integration interval.
NT number of time-integration intervals.
DT size of time-integration intervals.

F initial condition U(0,X)= F(X).

G initial condition D YDT (0,X)= G(X).

C positive constant.

Returns

T grid of NT intervals.
X grid of NX intervals.
U solution array.

[T, X, U] = PDE_WAVE_IMP(N, DX, K, DT, C, F, G, ALPHA, BETA) solves the wave
equation D2UDT2 = C D2U/DX2 with the implicit method on [0,1]x[0,1]. Initial conddn is
U(0,X) = F, D UDT (0,X)= G(X) and boundary conditions are U(t,8)ALPHA and U(t,1)=
beta. C is a positive constant. N is the number of space wtiegrintervals and K is the number
of time-integration intervals. DX is the size of a spacegnéion interval and DT is the size of
time-integration intervals.

Parameters

NX number of space integration intervals.
DX size of a space integration interval.
NT number of time-integration intervals.
DT size of time-integration intervals.

F initial condition U(0,X)= F(X).

G initial condition D YDT (0,X)= G(X).

C positive constant.

Returns

T grid of NT intervals.
X grid of NX intervals.
U solution array.

3.10.5 2-D solver for the Poisson Equation

POISSONFD two-dimensional Poisson solver [U, X, YE POISSONFD(A, C, B, D, NX, NY,
FUN, BOUND) solves by five-point finite dierence scheme the problem -LAPL(&FUN in the
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rectangle (A,B)x(C,D) with Dirichlet boundery conditionsXJ{Y) =BOUND(X,Y) for any (X, Y)
on the boundery of the rectangle.

[U, X, Y, ERROR] = POISSONFD(A,C,B,D,NX,NY,FUN,BOUND,UEX) computes also the
maximum nodal error ERROR with respect to the exact solutigXxXUFUN, BOUND and UEX
can be online functions.

Parameters

A, B

C, D rectangle (A,B)x(C,D) where the solution is computed.
NX X equispaced grid of NX intervals.

NY Y equispaced grid of NY intervals.

FUN

BOUND boundary condition.

UEX exact solution.

Returns

U solution array.

X equispaced grid of NX intervals.

Y equispaced grid of NY intervals.

ERROR maximum nodal error ERROR with respect to the exactisalWEX.

4 Conclusion

This summer internship allow me to improve skills :
e communication between my supervisor, my colleague and .
e analyze of the topics and what was the main objective of mgmsugor executing this library.
e management of my work and respect of the timetable to aclaiktlee aims.
e reviews and complements about my scientific programmingviedye.
e strictness and precision to produce a component which waeiectly.

Before | finish with this report | would like to thank Carlos Balaad the teaching team to
follow me during this training period.

5 How to continue
Finally I think my work can be modified and completed to addctions or enrich the documenta-

tion...In fact | strive to keep the same variable’s name lifusdctions with a view to modifying or
completing them :
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nbit : number of iterations
err : relative error of the residual
X, X : vector, matrix

aux : auxiliary variable
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