Mestrados em Engenharia Química e Industrial - 1º semestre 2008/2009 Matemática Aplicada

Ficha prática nº 6 - Problemas de Valor Inicial para EDOs

Docente: Carlos Balsa - Departamento de Matemática - ESTiG

- 1. Considere a EDO escalar e não linear $y' = -2ty^2$, com valor inicial y(0) = 1 e passo de tempo h = 0.25.
 - (a) Use um método implícito de segunda ordem para aproximar o valor de y(0.25).
 - (b) Use um método preditor-corrector de segunda ordem para aproximar os valor de y compreendidos entre $t_0 = 0$ e $t_f = 2$, usando um passo h = 0.25.
- 2. O seguinte problema de valor inicial faz a modelação da cinética de uma reacção química. Supondo que a concentração de três componentes químicos é dada por $y_1(t)$, $y_2(t)$ e $y_3(t)$. Se a taxa de reacção $y_1 \rightarrow y_2$ é proporcional a y_1 , e a taxa de reacção $y_2 \rightarrow y_3$ é proporcional a y_2 , então as concentrações são governadas pelo sistema de EDOs linear e homogéneo, com coeficientes constantes

$$\mathbf{y}' = \begin{bmatrix} y_1' \\ y_2' \\ y_3' \end{bmatrix} = \begin{bmatrix} -c_1 y_1 \\ c_1 y_1 - c_2 y_2 \\ c_2 y_2 \end{bmatrix} = \begin{bmatrix} -c_1 & 0 & 0 \\ c_1 & -c_2 & 0 \\ 0 & c_2 & 0 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \mathbf{A}\mathbf{y},$$

em que c_1 e c_2 são as taxas de reacção, consideradas constantes nos dois casos.

- (a) Determine a matriz Jacobiana deste sistema e indique quais são os seus valores próprios.
- (b) Se as taxas de reacção forem positivas, serão as soluções deste sistema estáveis?
- (c) Resolva numericamente este sistema supondo que $y_1(0) = y_2(0) = y_3(0) = 1$. Considere $c_1 = 1$ e fazendo variar $c_2 = 10$, $c_2 = 100$ e $c_2 = 1000$. Para cada um dos valores de c_2 resolva o sistema usando os métodos de
 - i. Runge-Kutta de 4ª ordem,
 - ii. Preditor-corrector de 4^a ordem.

Em cada um dos casos apresente os resultados na forma de gráficos representando a evolução das concentrações em função do tempo deste $t_0=0$ até que a solução atinja um estado estacionário. Repita o exercícios para vários passos de tempo h escolhidos por si.

1

(d) Comente os resultados obtidos.