
Numerical Methods Library for OCTAVE
USER’S GUIDE

Lilian Calvet

November 13, 2008

Contents
1 How to install and use NMLibforOctave 2

1.1 On Windows . 2
1.2 On Linux . 2

2 About the NMLibforOctave’s content 2

3 Functions’ description and use 4
3.1 Linear systems . 4

3.1.1 Jacobi . 5
3.1.2 Gauss-Seidel . 5
3.1.3 MINRES . 5
3.1.4 GMRES . 6
3.1.5 Already existing functions about linear solver 6
3.1.6 What is hidden behind the command ’\’ 6

3.2 Linear least squares . 7
3.2.1 Normal equation . 8
3.2.2 Householder . 8
3.2.3 SVD . 8

3.3 Nonlinear equations . 8
3.3.1 Bisection . 9
3.3.2 Fixed-point . 9
3.3.3 Newton-Raphson . 10
3.3.4 Secant . 10
3.3.5 Newton’s method for systems of nonlinear equations 11

3.4 Interpolation . 11
3.4.1 Monomial basis . 12
3.4.2 Lagrange interpolation . 12
3.4.3 Newton interpolation . 12

3.5 Numerical integration . 12
3.5.1 Trapezoid’s rule . 13
3.5.2 Simpson’s rule . 13
3.5.3 Newton-Cotes’ rule . 14

3.6 Eigenvalue problems . 14
3.6.1 Power iteration . 14
3.6.2 Inverse method . 15
3.6.3 Rayleigh quotient iteration . 15
3.6.4 Orthogonal iteration . 16
3.6.5 QR iteration . 16

3.7 Optimization . 16
3.7.1 Newton’s method . 17
3.7.2 Conjugate gradient method . 18
3.7.3 Lagrange multipliers . 19

3.8 Initial value problems for Ordinary differential Equations 19
3.8.1 Euler . 20

1

3.8.2 Implicit Euler . 20
3.8.3 Modified Euler . 21
3.8.4 Fourth-order Rounge-Kutta . 21
3.8.5 Fourth-order predictor . 21

3.9 Boundary value problems for Ordinary differential Equations 22
3.9.1 Shooting method . 22
3.9.2 Finite difference method . 24
3.9.3 Colocation method . 24

3.10 Partial Differential Equations . 25
3.10.1 Method of lines (for Heat equation) 25
3.10.2 2-D solver for Advection equation . 26
3.10.3 2-D solver for Heat equation . 27
3.10.4 2-D solver for Wave equation . 28
3.10.5 2-D solver for the Poisson Equation 29

2

1 How to install and use NMLibforOctave
In this part we explain how to install and to use the NMLibforOctave :

1.1 On Windows
Once the installation of Octave (3.0.0 and upper version) is finished you have to add a new path
corresponding to the NMLibforOctave directory :

• Place the directory NMLibforOctave on the installation directory ∼/Octave/ .

• Open ∼ /.octaverc .

• Add the line : ’addpath("∼/Octave/NMLibforOctave");’.
If there is a space ’ ’ in a name of a subdirectory, add the character ’\’ before.
Example : "C:/Program Files/Octave/NMLibforOctave"
→ addpath("C:/Program\ Files/Octave/NMLibforOctave");

• Save and exit.

1.2 On Linux
Once the installation of Octave (3.0.0 and upper version) is finished you have to add a new path
corresponding to the NMLibforOctave directory :

• You can place the directory NMLibforOctave on the installation directory.
For example on Ubuntu after installing octave with your package manager (package name
: octave 3.0) copy NMLibforOctave in /usr/share/octave/3.0.0/m’).

• Open ∼ /.octaverc .

• Add the line : ’addpath("∼/NMLibforOctave");’.

• Save and exit.

2 About the NMLibforOctave’s content
The library NMLibforOctave’s content can be decomposed is different application fields :

1. Linear systems

• Gauss elimination

• LU factorization

• Cholesky factorization

• Jacobi

• Gauss-Seidel

• Conjugate Gradient

3

• MINRES

• GMRES

2. Linear least squares

• Normal equation

• Householder

• SVD

3. Nonlinear equations

• Bisection

• Fixed-point

• Newton-Raphson

• Secant

• Newton’s method for systems of nonlinear equations

4. Interpolation

• Monomial basis

• Lagrange interpolation

• Newton interpolation

5. Numerical integration

• Trapezoid’s rule

• Simpson’s rule

• Newton-Cotes’ rule

6. Eigenvalue problems

• Power iteration

• Inverse method

• Rayleigh quotient iteration

• Orthogonal iteration

• QR iteration

7. Optimization

• Newton’s method

• Conjugate gradient method

• Lagrange multipliers

8. Initial value problems for Ordinary differential Equations

4

• Euler

• Implicit Euler

• Modified Euler

• Fourth-order Rounge-Kutta

• Fourth-order predictor

9. Boundary value problems for Ordinary differential Equations

• Shooting method

• Finite difference method

• Colocation method

10. Partial Differential Equations

• Method of lines (for Heat equation)

• Finite difference method for time-dependant PDEs (2-D solver for Advection, Heat
and Wave equations) :

– explicit method for Advection equation
– implicit method for Advection equation
– explicit method for Heat equation
– implicit method for Heat equation
– explicit method for Wave equation
– implicit method for Wave equation

• Finite difference method for time-independant PDEs (2-D solver for the Poisson
equation)

3 Functions’ description and use

3.1 Linear systems
Systems of linear algebraic equations arise in almost every aspect of applied mathematics and
scientific computation. Such systems often occur naturally, but they are also frequently the
result of approximating nonlinear equations by linear equations or differential equations by al-
gebraic equations. For these reasons, the efficient and accurate solution of linear systems forms
the cornerstone of many numerical methods for solving a wide variety of practical computa-
tional problems.

In matrix-vector notation, a system of linear algebraic equations has the form

Ax = b (1)

where A is an m×n matrix, b is a given m-vector, and x is the unknown solution n-vector to be
determined. There may or may not be a solution; and if there is a solution, it may or may not
be unique. In this section we will consider only square systems solver, which means that m =

n, i.e., the matrix has the same number of rows and columns.

5

3.1.1 Jacobi

[X, RES, NBIT] = JACOBI(A,B,X0,ITMAX,TOL) computes the solution of the linear
system A*X = B with the Jacobi’s method. If JACOBI fails to converge after
the maximum number of iterations or halts for any reason, a message is displayed.

Parameters
A a square matrix.
B right hand side vector.
X0 initial point.
ITMAX maximum number of iteration.
TOL tolerance on the stopping criterion.

Returns
X computed solution.
RES norm of the residual in X solution.
NBIT number of iterations to compute X solution.

3.1.2 Gauss-Seidel

[X, RES, NBIT] = GAUSS_SEIDEL(A,B,X0,ITMAX,TOL) computes the solution of
the linear system A*X = B with the Gauss-Seidel’s method. If GAUSS_SEIDEL
fails to converge after the maximum number of iterations or halts for any
reason, a message is displayed.

Parameters
A a square matrix.
B right hand side vector.
X0 initial point.
ITMAX maximum number of iteration.
TOL tolerance on the stopping criterion.

Returns
X computed solution.
RES norm of the residual in X solution.
NBIT number of iterations to compute X solution.

3.1.3 MINRES

[X,FLAG,RELRES,ITN,RESVEC] = MINRES(A,B,RTOL,MAXIT) solves the linear system
of equations A*X = B by means MINRES iterative method.

Parameters
A square (preferably sparse) matrix. In principle A should be symmetric.
B right hand side vector.
TOL relative tolerance for the residual error.
MAXIT maximum allowable number of iterations.

6

X0 initial guess.

Returns
X computed approximation to the solution.
RELRES ratio of the final residual to its initial value, measured in the
Euclidean norm.
ITN actual number of iterations performed.
RESVEC describes the convergence history of the method.

3.1.4 GMRES

[X, NBIT, BCK_ER, FLAG] = GMRES(A,B,X0,ITMAX,M,TOL,M1,M2,LOCATION) attempts
to solve the system of linear equations A*x = b for x. The n-by-n coefficient
matrix A must be square and should be large and sparse. The column vector
B must have length n. If GMRES fails to converge after the maximum number
of iterations or halts for any reason, a message is displayed. GMRES restarts
all m-iterations.

Parameters
A a square matrix.
B right hand side vector.
X0 initial guess.
ITMAX maximum number of iteration.
M GMRES restarts all m-iterations.
TOL tolerance on the stopping criterion.
M1,M2 preconditionners
LOCATION preconditionners’ location : if left then location=1 else right
and location=2.

Returns
X computed solution.
NBIT number of iterations to compute X solution.
BCK_ER describes the convergence history of the method.
FLAG if the method converges then FLAG=0 else FLAG=-1.

3.1.5 Already existing functions about linear solver

It already exists function to solve linear systems in Octave. We have particularly the Conjugate
Gradient method pcg, the Cholesky factorization chol and finally LU factorization lu. To see
how to use these function use the command ’help <function_name>’ in Octave.

3.1.6 What is hidden behind the command ’\’

It is useful to know that the specific algorithm used by Octave when the command is invoked
depends upon the structure of the matrix A. For a system with dense matrix, Octave only uses
the LU or the QR factorization. When the matrix is sparse Octave follows this procedure :

7

1. if the matrix is upper (with column permutations) or lower (with row permutations) tri-
angular, perform a sparse forward or backward substitution;

2. if the matrix is square, symmetric with a positive diagonal, attempt sparse Cholesky
factorization;

3. if the sparse Cholesky factorization failed or the matrix is not sym- metric with a positive
diagonal, factorize using the UMFPACK li- brary;

4. if the matrix is square, banded and if the band density is "small enough" continue, else
goto 3;

(a) if the matrix is tridiagonal and the right-hand side is not sparse continue, else goto
b);

i. if the matrix is symmetric, with a positive diagonal, attempt Cholesky factor-
ization;

ii. if the above failed or the matrix is not symmetric with a positive diagonal use
Gaussian elimination with pivoting;

(b) if the matrix is symmetric with a positive diagonal, attempt Cholesky factorization;

(c) if the above failed or the matrix is not symmetric with a positive diagonal use Gaus-
sian elimination with pivoting;

5. if the matrix is not square, or any of the previous solvers flags a singular or near singular
matrix, find a solution in the least-squares sense.

%Among above-cited solvers, GMRES, MINRES and Conjugate Gradient are used to solve
"large" linear system, i.e. , with "large" n.

1. MINRES is used to solve linear systems with symmetric indefinite matrices.

2. Conjugate Gradient Method is used with symmetric positive definite matrix.

3. GMRES is used in other cases.

Notice that there are no pre-established rules to solve a linear system. It depends on the size,
on the sparse structure... of the system. Kind and location of preconditioners can also be very
important.

3.2 Linear least squares
What meaning should we attribute to a system of linear equations Ax = b if the matrix A is not
square? Since a nonsquare matrix cannot have an inverse, the system of equations must have
either no solution or a nonunique solution. Nevertheless, it is often useful to define a unique
vector x that satisfies the linear system in an approximate sense. In this section we will consider
methods for solving such problems.

Let A be an m ×n matrix. We will be concerned with the most commonly occurring case,
m > n, which is called overdetermined because there are more equations than unknowns.

8

3.2.1 Normal equation

[X, RES] = NORMALEQ(A,B) computes the solution of linear least squares problem
min(norm(A*X-B,2)) solving associated normal equation A’*A*X = A’*B.

Parameters
A a matrix.
B right hand side vector.
Returns

X computed solution.
RES value of norm(A*X-B) with X solution computed.

3.2.2 Householder

[X, RES] = LLS_HQR(A,B) computes the solution of linear least squares problem
min(norm(A*X-B,2)) using Householder QR.

Parameters
A a matrix.
B right hand side vector.

Returns
X computed solution.
RES value of norm(A*X-B) with X solution computed.

3.2.3 SVD

[X, RES] = SVD_LEAST_SQUARES(A,B) computes the solution of linear least squares
problem min(norm(A*X-B,2)) using the singular value decomposition of A.

Parameters
A a matrix.
B right hand side vector.

Returns
X computed solution.
RES value of norm(A*X-B) with X solution computed.

3.3 Nonlinear equations
We will now consider methods for solving nonlinear equations. Given a nonlinear function f ,
we seek a value x for which

f (x) = 0. (2)

Such a solution value for x is called a root of the equation, and a zero of the function f .
Though technically they have distinct meanings, these two terms are informally used more or

9

less interchangeably, with the obvious meaning. Thus, this problem is often referred to as root
finding or zero finding. In discussing numerical methods for solving nonlinear equations, we
will distinguish two cases:

f : R→ R (scalar), (3)

and

f : Rn → Rn (vector). (4)

The latter is referred to as a system of nonlinear equations, in which we seek a vector x
such that all the component functions of f (x) are zero simultaneously.

3.3.1 Bisection

X = BISECTION(FUN,A,B,ITMAX,TOL) tries to find a zero X of the continuous
function FUN in the interval [A, B] using the bisection method. FUN accepts
real scalar input x and returns a real scalar value. If the search fails
an error message is displayed. FUN can also be an inline object.

[X, RES, NBIT] = BISECTION(FUN,A,B,ITMAX,TOL) returns the value of the residual
in X solution and the iteration number at which the solution was computed.

Parameters
FUN evaluated function.
A,B [A,B] interval where the solution is computed, A < B and sign(FUN(A))
= - sign(FUN(B)).
ITMAX maximal number of iterations.
TOL tolerance on the stopping criterion.

Returns
X computed solution.
NBIT number of iterations to find the solution.
RES value of the residual in X solution.

3.3.2 Fixed-point

X = FIXED_POINT(FUN,X0,ITMAX,TOL) solves the scalar nonlinear equation such
that ’FUN(X) == X’ with FUN continuous function. FUN accepts real scalar
input X and returns a real scalar value. If the search fails an error message
is displayed. FUN can also be inline objects.

[X, RES, NBIT] = FIXED_POINT(FUN,X0,ITMAX,TOL) returns the norm of the residual
in X solution and the iteration number at which the solution was computed.

Parameters
FUN evaluated function.
DFUN f’s derivate.

10

X0 initial point.
ITMAX maximal number of iteration.
TOL tolerance on the stopping criterion.

Returns
X computed solution.
RES norm of the residual FUN(X)-X in X solution.
NBIT number of iterations to find the solution.

3.3.3 Newton-Raphson

X = NLE_NEWTRAPH(FUN,DFUN,X0,ITMAX,TOL) tries to find a zero X of the continuous
and differentiable function FUN nearest to X0 using the Newton-Raphson method.
FUN and its derivate DFUN accept real scalar input x and returns a real scalar
value. If the search fails an error message is displayed. FUN and DFUN
can also be inline objects.

[X, RES, NBIT] = NLE_NEWTRAPH(FUN,DFUN,X0,ITMAX,TOL) returns the value of
the residual in X solution and the iteration number at which the solution
was computed.

Parameters
FUN evaluated function.
DFUN f’s derivate.
X0 initial point.
ITMAX maximal number of iterations.
TOL tolerance on the stopping criterion.

Returns
X computed solution.
RES value of the residual in x solution.
NBIT number of iterations to find the solution.

3.3.4 Secant

X = SECANT(FUN,X1,X2,ITMAX,TOL) tries to find a zero X of the continuous
function FUN using the secant method with starting points X1, X2. FUN accepts
real scalar input X and returns a real scalar value. If the search fails
an error message is displayed. FUN can also be an inline object.

[X, RES, NBIT] = SECANT(FUN,X1,X2,ITMAX,TOL) returns the value of the residual
in X solution and the iteration number at which the solution was computed.

Parameters
FUN evaluated function.
X1,X2 starting points.

11

ITMAX maximal number of iterations.
TOL tolerance on the stopping criterion.

Returns
X computed solution.
RES value of the residual in X solution.
NBIT number of iterations to find the solution.

3.3.5 Newton’s method for systems of nonlinear equations

X = NLE_NEWTSYS(FFUN,JFUN,X0,ITMAX,TOL) tries to find the vector X, zero
of a nonlinear system defined in FFUN with jacobian matrix defined in the
function JFUN, nearest to the vector X0.

[X, RES, NBIT] = NLE_NEWTSYS(FUN,DFUN,X0,ITMAX,TOL) returns the norm of the
residual in X solution and the iteration number at which the solution was
computed.

Parameters
FFUN evaluated function.
JFUN FFUN’s jacobian matrix.
X0 initial point.
ITMAX maximal number of iterations.
TOL tolerance on the stopping criterion.

Returns
X computed solution.
RES norm of the residual in X solution.
NBIT number of iterations to find the solution.

3.4 Interpolation
Interpolation simply means fitting some function to given data so that the function has the same
values as the given data. In general, the simplest interpolation problem in one dimension is of
the following form: for given data

(ti, yi), i = 1, ..., n, (5)

with t1 < t2 < . . .< tn , we seek a function f such that

f (ti) = yi, i = 1, ..., n. (6)

We call f an interpolating function, or simply an interpolant, for the given data. It is often
desirable for f (t) to have "reasonable" values for t between the data points, but such a require-
ment may be difficult to quantify. In more complicated interpolation problems, additional data
might be prescribed, such as the slope of the interpolant at given points, or additional con-
straints might be imposed on the interpolant, such as monotonicity, convexity, or the degree of
smoothness required.

12

3.4.1 Monomial basis

P = ITPOL_MONOM(X,Y,x) computes the monomial basis interpolation of points
defined by x-coordinate X and y-coordinate Y. x can be a real vector, each
row in the solution array P corresponds to a x-coordinate in the vector x.

Parameters
X abscissas of interpolated points.
Y odinates of interpolated points.
x can be a scalar or a vector of values.

Returns
P value of p(x).

3.4.2 Lagrange interpolation

P = LAGRANGE(X,Y,x) computes the polynomial Lagrange interpolation of points
defined by x-coordinate X and y-coordinate Y. x can be a real vector, each
row in the solution array P corresponds to a x-coordinate in the vector x.

Parameters
X abscissas of interpolated points.
Y odinates of interpolated points.
x can be a scalar or a vector of values.

Returns
P value of P(x).

3.4.3 Newton interpolation

P = ITPOL_NEWT(X,Y,x) computes the polynomial Newton interpolation of points
defined by x-coordinate X and y-coordinate Y. x can be a real vector, each
row in the solution array P corresponds to a x-coordinate in the vector x.

Parameters
X abscissas of interpolated points.
Y odinates of interpolated points.
x can be a scalar or a vector of values.

Returns
P value of p(x).

3.5 Numerical integration
The numerical approximation of definite integrals is known as numerical quadrature. This name
derives from ancient methods for computing areas of curved figures, the most famous example
of which is the problem of "squaring the circle" (finding a square having the same area as a

13

given circle). In our case we wish to compute the area under a curve defined over an interval
on the real line. Thus, the quantity we wish to compute is of the form

I(f) =

∫ b

a
f (x)dx. (7)

We will generally take the interval of integration to be finite, and we will assume for the most
part that the integrand f is continuous and smooth. We will consider only briefly how to deal
with an infinite interval of integration or an integrand function that may have discontinuities or
singularities.

Note that we seek a single number as an answer, not a function or a symbolic formula. This
feature distinguishes numerical quadrature from the solution of differential equations or the
evaluation of indefinite integrals, as in elementary calculus and in many packages for symbolic
computation.

An integral is, in effect, an infinite summation. It should come as no surprise that we will
approximate this infinite sum by a finite sum. Such a finite sum, in which the integrand function
is sampled at a finite number of points in the interval of integration, is called a quadrature
rule. Our main object of study will be how to choose the sample points and how to weight
their contributions to the quadrature formula so that we obtain a desired level of accuracy at
a reasonable computational cost. For numerical quadrature, computational work is usually
measured by the number of evaluations of the integrand function that are required.

3.5.1 Trapezoid’s rule

RES = INTE_TRAPEZ(FUN,A,B,N) computes an approximation of the integral of
the function FUN via the trapezoid method (using N equispaced intervals).
FUN accepts real scalar input x and returns a real scalar value. FUN can
also be an inline object.

Parameters
FUN integrated function.
A,B FUN is integrated on [A,B].
N number of subdivisions.

Returns
RES result of integration.

3.5.2 Simpson’s rule

RES = INTE_SIMPSON(FUN,A,B,N) computes an approximation of the integral of
the function FUN via the Simpson method (using N equispaced intervals). FUN
accepts real scalar input x and returns a real scalar value. FUN can also
be an inline object.

Parameters
FUN integrated function.
A,B FUN is integrated on [A,B].

14

N number of subdivisions.

Returns
RES result of integration.

3.5.3 Newton-Cotes’ rule

RES = INTE_NEWTCOT(FUN,A,B,N) computes an approximation of the integral of
the function FUN via the Newton-Cotes method (using N equispaced intervals).
FUN accepts real scalar input x and returns a real scalar value. FUN can
also be an inline object.

Parameters FUN integrated function. A,B FUN is integrated on [A,B]. N number
of subdivisions.

Returns RES result of integration.

3.6 Eigenvalue problems
The standard algebraic eigenvalue problem is as follows: Given an n ×n matrix A, find a scalar
λ and a nonzero vector x such that

Ax = λx. (8)

Such a scalar λ is called an eigenvalue, and x is a corresponding eigenvector. The set of all the
eigenvalues of a matrix A, denoted by λ(A), is called the spectrum of A.

An eigenvector of a matrix determines a direction in which the effect of the matrix is par-
ticularly simple: The matrix expands or shrinks any vector lying in that direction by a scalar
multiple, and the expansion or contraction factor is given by the corresponding eigenvalue λ.
Thus, eigenvalues and eigenvectors provide a means of understanding the complicated behavior
of a general linear transformation by decomposing it into simpler actions.

Eigenvalue problems occur in many areas of science and engineering. For example, the
natural modes and frequencies of vibration of a structure are determined by the eigenvectors
and eigenvalues of an appropriate matrix. The stability of the structure is determined by the
locations of the eigenvalues, and thus their computation is of critical interest. We will also see
later in this book that eigenvalues can be very useful in analyzing numerical methods, such as
the convergence analysis of iterative methods for solving systems of algebraic equations, and
the stability analysis of methods for solving systems of differential equations.

3.6.1 Power iteration

[LAMBDA, V, NBIT] = EIG_POWER(A, X0, ITMAX, TOL) computes dominant eigenvalue
and associated eigenvector of A with power iteration method. If EIG_POWER
fails to converge after the maximum number of iterations or halts for any
reason, a message is displayed.

Parameters

15

A a square matrix.
X0 initial point.
ITMAX maximal number of iterations.
TOL maximum relative error.

Returns
LAMBDA dominant eigenvalue of A.
V associated eigenvector.
NBIT number of iteration to the solution.

3.6.2 Inverse method

[LAMBDA, V, NBIT] = EIG_INVERSE(A, X0, ITMAX, TOL) Compute the smallest eigenvalue
of A and associated eigenvector with inverse method. If EIG_INVERSE fails
to converge after the maximum number of iterations or halts for any reason,
a message is displayed.

Parameters
A a square matrix.
X0 initial point.
ITMAX maximal number of iterations.
TOL maximum relative error.

Returns
LAMBDA smallest eigenvalue of A.
V associated eigenvector.
NBIT number of iteration to the solution.

3.6.3 Rayleigh quotient iteration

[LAMBDA, V, NBIT] = EIG_RAYLEIGH(A, X0, ITMAX, TOL) computes the best estimate
of an eigenvalue of A associated to an approximate eigenvector X0 with Rayleigh
quotient iteration method. If EIG_RAYLEIGH fails to converge after the maximum
number of iterations or halts for any reason, a message is displayed. This
method can be used to accelerate the convergence of a method such as power
iteration.

Parameters
A a square matrix.
X0 initial point corresponding to an approximate eigenvector.
ITMAX maximal number of iterations.
TOL maximum relative error.

Returns
LAMBDA the best estimate for the corresponding eigenvalue.
V associated eigenvector.
NBIT number of iteration to the solution.

16

3.6.4 Orthogonal iteration

[LAMBDA, V, NBIT] = EIG_ORTHO(A, X0, ITMAX, TOL) computes P=size(X0,2) eigenvalues
and associated eigenvectors of A with orthogonal iteration method. If EIG_ORTHO
fails to converge after the maximum number of iterations or halts for any
reason, a message is displayed.

Parameters
A a square matrix.
X0 arbitrary N x P matrix of rank P, contains X0(1),X0(2),...X0(P)
linearly independant.
ITMAX maximal number of iterations.
TOL maximum relative error.

Returns
LAMBDA P-vector containing eigenvalues of A.
V P eigenvectors.
NBIT number of iteration to the solution.

3.6.5 QR iteration

[LAMBDA, V, NBIT] = EIG_QR(A, ITMAX, TOL) computes N (=size(A)) eigenvalues
and associated eigenvectors of A with orthogonal iteration method. If EIG_QR
fails to converge after the maximum number of iterations or halts for any
reason, a message is displayed.

Parameters
A (N*N) matrix
ITMAX maximal number of iterations.
TOL maximum relative error.

Returns
LAMBDA N-vector containing eigenvalues of A.
V N associated eigenvectors.
NBIT number of iteration to the solution.

3.7 Optimization
We now turn to the problem of determining extreme values, or optimum values (maxima or
minima), that a given function has on a given domain. More formally, given a function f :
Rn → R, and a set S ⊆ Rn , we seek x ∈ S such that f attains a minimum on S at x, i.e.,
f (x) ≤ f (y) for all y ∈ S . Such a point x is called a minimizer , or simply a minimum, of f
. Since a maximum of f is a minimum of f , it suffices to consider only minimization. The
objective function, f , may be linear or nonlinear, and it is usually assumed to be differentiable.
The constraint set S is usually defined by a system of equations or inequalities, or both, that
may be linear or nonlinear. A point x ∈ S that satisfies the constraints is called a feasible point.
If S = Rn , then the problem is unconstrained . General continuous optimization problems have

17

the form

min
x

f (x) subject to g(x) = 0 and h(x) ≤ 0, (9)

where f : Rn → R, g : Rn → Rm , and h : Rn → Rk . Optimization problems are classified
by the properties of the functions involved. For example, if f , g, and h are all linear, then we
have a linear programming problem. If any of the functions involved are nonlinear, then we
have a nonlinear programming problem. Important subclasses of the latter include problems
with a nonlinear objective function and linear constraints, or a nonlinear objective function and
no constraints.

Newton’s method and Conjugate Gradient’s method are directly used in unconstrained op-
timization and Lagrange multipliers are used in constrained optimization.

3.7.1 Newton’s method

[X, FX, NBIT] = OPT_NEWTON(FUN, GFUN, HFUN, X0, ITMAX, TOL) computed the
minimum of the FUN function with the newton method nearest X0. Function
GFUN defines the gradient vector and function HFUN defines the hessian matrix.
FUN accepts a real vector input and return a real vector. FUN, GFUN and
HFUN can also be inline object. If OPT_NEWTON fails to converge after the
maximum number of iterations or halts for any reason, a message is displayed.

Parameters
FUN evaluated function.
GFUN FUN’s gradient function.
HFUN FUN’s hessian matrix function.
X0 initial point.
ITMAX maximal number of iterations.
TOL tolerance on the stopping criterion.

Returns
X computed solution of min(FUN).
FX value of FUN(X) with X computed solution.
NBIT number of iterations to find the solution.

%The iteration scheme for Newton’ s method has the form

xk+1 = xk − H−1
f (xk) f (xk), (10)

where H f (x) is the Hessian matrix of second partial derivatives of f ,

{H f (x)}i j =
∂2 f (x)
∂xi∂x j

, (11)

evaluated at xk . As usual, we do not explicitly invert the Hessian matrix but instead use it to
solve a linear system

18

H f (xk)sk = f (xk) (12)

for sk , then take as next iterate

xk+1 = xk + sk. (13)

The convergence rate of Newton’s method for minimization is normally quadratic. As
usual, however, Newton’s method is unreliable unless started close enough to the solution.

3.7.2 Conjugate gradient method

[X, FX, NBIT] = OPT_CG(FUN, X0, GFUN, HFUN, TOL, ITMAX) computed the minimum
of the FUN function with the conjugate gradient method nearest X0. Function
GFUN defines gradient vector and function HFUN defines hessian matrix. FUN
accepts a real vector input and return a real vector. FUN, GFUN and HFUN
can also be inline object. If OPT_CG fails to converge after the maximum
number of iterations or halts for any reason, a message is displayed.

Parameters
FUN evaluated function.
X0 initial point.
GFUN FUN’s gradient function.
HFUN FUN’s hessian matrix function.
TOL tolerance on the stopping criterion.
ITMAX maximal number of iterations.

Returns
X computed solution of min(FUN).
FX value of FUN(X) with X computed solution.
NBIT number of iterations to find the solution.

%The conjugate gradient method is another alternative to Newton’s method that does not
require explicit second derivatives. Indeed, unlike secant updating methods, the conjugate
gradient method does not even store an approximation to the Hessian matrix, which makes it
especially suitable for very large problems.
The conjugate gradient method uses gradients, but it avoids repeated searches by modifying
the gradient at each step to remove components in previous directions. The resulting sequence
of conjugate (i.e., orthogonal in some inner product) search directions implicitly accumulates
information about the Hessian matrix as iterations proceed. Theoretically, the method is exact
after at most n iterations for a quadratic objective function in n dimensions, but it is usually
quite effective for more general unconstrained minimization problems as well.

19

3.7.3 Lagrange multipliers

[XMIN, LAMBDAMIN, FMIN] = OPT_LAGRANGE(F, GRADF, G, JACG, X0) computed the
minimum of the function FUN subject to ’G(X) = 0’ with the lagrange multiplier
method. Function GRADF defines the gradient vector of F. Function G represents
equality-constrained and function JACG defines its jacobian matrix. F and
G accept a real vector input and return a real vector. F, GRADF, G and JACG
can also be inline object.

Parameters
F evaluated function.
GRADF F’s gradient function.
G equality-constrained function : ’G(X) = 0’.
X0 initial point.

Returns
XMIN computed solution of min(FUN).
LAMBDAMIN vector of Lagrange multipliers on XMIN.
FX value of FUN(X) with X computed solution.

%Consider the minimization of a nonlinear function subject to nonlinear equality constraints,

min
x

f (x) subject to g(x) = 0, (14)

where f : Rn → R and g : Rn → Rm , with m ≤ n.
The Lagrangian function, L : Rn+m → R, is given by

L(x, λ) = f (x) + λT g(x), (15)

whose gradient and Hessian are given by

5L(x, λ) =

[
Lx(x, λ)
Lλ(x, λ)

]
=

[
5 f (x) + JT

g (x)
g(x)

]
(16)

where Jg is the Jacobian matrix of g and λ is an m-vector of Lagrange multipliers.
Together, the necessary condition and the requirement of feasibility say that we are looking
for a critical point of the Lagrangian function, which is expressed by the system of nonlinear
equations [

5 f (x) + JT
g (x)

g(x)

]
= 0 (17)

3.8 Initial value problems for Ordinary differential Equations
We determine a unique solution to the ODE y′(t) = f (y, t) with y(t0) = t0, provided that f is
continuously differentiable. Because the independent variable t usually represents time, we
think of t0 as the initial time and y0 as the initial value. Hence, this is termed an initial value
problem. The ODE governs the dynamic evolution of the system in time from its initial state y0

at time t0 onward, and we seek a function y(t) that describes the state of the system as a function
of time.

20

3.8.1 Euler

[TT,Y] = ODE_EULER(ODEFUN,TSPAN,Y,NH) with TSPAN = [T0, TF] integrates the
system of differential equations Y’=f(T,Y) from time T0 to TF with initial
condition Y0 using the forward Euler method on an equispaced grid of NH intervals.
Function ODEFUN(T,Y) must return a column vector corresponding to f(T, Y).
Each row in the solution array Y corresponds to a time returned in the column
vector T.

Parameters
ODEFUN integrated function.
TSPAN TSPAN = [T0 TF]
Y initial value Y(T0).
NH TT equispaced grid of NH intervals.

Returns
TT equispaced grid of NH intervals.
Y solution array.

3.8.2 Implicit Euler

[TT,Y] = ODE_BEULER(ODEFUN,TSPAN,Y,NH) with TSPAN = [T0, TF] integrates the
system of differential equations Y’=f(T,Y) from time T0 to TF with initial
condition Y0 using the backward Euler method on an equispaced grid of NH
intervals. Function ODEFUN(T, Y) must return a column vector corresponding
to f(T, Y). Each row in the solution array Y corresponds to a time returned
in the column vector T.

Parameters
ODEFUN integrated function.
TSPAN TSPAN = [T0 TF].
Y initial value Y(T0).
NH TT equispaced grid of NH intervals.

Returns
TT equispaced grid of NH intervals.
Y solution array.

%Euler’s method bases its projection on the derivative at the current point, and the resulting
large value causes the numerical solution to diverge radically from the desired solution. This
behavior should not surprise us. The Jacobian for this equation is J = 100, so the stability
condition for Euler’s method requires a stepsize h < 0.02, which we are violating.
By contrast, the backward Euler method has no trouble solving this problem. In fact, the
backward Euler solution is extremely insensitive to the initial value.

21

Figure 1: euler vs. beuler with a typical stiff ODE y′ = −100y + 100t + 101

3.8.3 Modified Euler

[TT,Y] = ODE_EULER(ODEFUN,TSPAN,Y,NH) with TSPAN = [T0, TF] integrates the
system of differential equations Y’=f(T,Y) from time T0 to TF with initial
condition Y0 using the modified Euler method on an equispaced grid of NH
intervals. Function ODEFUN(T,Y) must return a column vector corresponding
to f(T, Y). Each row in the solution array Y corresponds to a time returned
in the column vector T.

Parameters
ODEFUN integrated function.
TSPAN TSPAN = [T0 TF].
Y initial value Y(T0).
NH TT equispaced grid of NH intervals.

Returns
TT equispaced grid of NH intervals.
Y solution array.

3.8.4 Fourth-order Rounge-Kutta

It corresponds to ode23,ode45 which already exit in Octave. Write ’help <function_name>’ in
Octave to have more informations.

3.8.5 Fourth-order predictor

[TT,Y] = ODE_FOP(ODEFUN,TSPAN,Y,NH) with TSPAN = [T0, TF] integrates the
system of differential equations Y’=f(T,Y) from time T0 to TF with initial

22

condition Y0 using the fourth-order predictor scheme on an equispaced grid
of NH intervals. Function ODEFUN(T,Y) must return a column vector corresponding
to f(T, Y). Each row in the solution array Y corresponds to a time returned
in the column vector T.

Parameters
ODEFUN integrated function.
TSPAN tspan = [T0 TF].
Y initial value Y(T0).
NH TT equispaced grid of NH intervals.

Returns
TT equispaced grid of NH intervals.
Y solution array.

3.9 Boundary value problems for Ordinary differential Equations
A boundary value problem for a differential equation specifies more than one point at which
the solution or its derivatives must have given values. For example, a two-point boundary value
problem for a second-order ODE has the form

y = f (t, y, y), a ≤ t ≤ b, (18)

with boundary conditions

y(a) = α, y(b) = β. (19)

An initial value problem for such a second-order equation would have specified both y and y′

at a single point, say, t0 . These initial data would have supplied all the information necessary
to begin a numerical solution method at t0 , stepping forward to advance the solution in time
(or whatever the independent variable might be).

3.9.1 Shooting method

[T,Y] = ODE_SHOOT(IVP, A, B, UA, UB) integrates the system of differential
equations u”= f(t,u,u’) from time A to B with boundary conditions u(A) =
UA and u(B) = UB. Function IVP(t,u,u’) must return a double column vector
[u’, u”] with u”= f(t,u,u’). Each row in the solution array Y corresponds
to a time returned in the column vector T.

Parameters
IVP integrated function.
A T0.
B TF.
UA initial value Y(T0).
UB final value Y(TF).

23

Returns
T equispaced grid.
Y solution array.

%The basic idea of the shooting method is illustrated in Fig. 2. Each curve represents a
solution of the same second-order ODE, with different values for the initial slope giving dif-
ferent solution curves. All of the solutions start with the given initial value y(a) = α, but for
only one value of the initial slope does the resulting solution curve hit the desired boundary
condition y(b) = β.

24

Figure 2: Shooting method for a two-point boundary value problem.

3.9.2 Finite difference method

[T,Y] = ODE_FINIT_DIFF(RHS, A, B, UA, UB, N) integrates the system of differential
equations u”= f(t,u,u’) from time A to B with boundary conditions u(A) =
UA and u(B) = UB on an equispaced grid of N intervals. Function RHS(t,u,u’)
must return a column vector corresponding to f(t,u,u’). Each row in the
solution array Y corresponds to a time returned in the column vector T.

Parameters
RHS integrated function.
A T0.
B TF.
UA initial value Y(T0).
UB final value Y(TF).
N T equispaced grid of N intervals.

Returns
T equispaced grid of N intervals.
Y solution array.

3.9.3 Colocation method

[T,Y] = ODE_COLLOC(RHS, A, B, UA, UB, DN, N) integrates the system of differential
equations u”= f(t,u,u’) from time A to B with boundary conditions u(A) =
UA and u(B) = UB on an equispaced grid of N intervals. Function RHS(t,u,u’)
must return a column vector corresponding to f(t,u,u’). Each row in the
solution array Y corresponds to a time returned in the column vector T.

25

Parameters
RHS integrated function.
A T0.
B TF.
UA initial value Y(T0).
UB final value Y(TF).
N T equispaced grid of N intervals.
DN degree of computed polynomial solution.

Returns
T equispaced grid of N intervals.
Y solution array.

3.10 Partial Differential Equations
We turn now to partial differential equations (PDEs), where many of the numerical tech- niques
we saw for ODEs, both initial and boundary value problems, are also applicable. The situation
is more complicated with PDEs, however, because there are additional inde- pendent variables,
typically one or more space dimensions and possibly a time dimension as well. Additional di-
mensions significantly increase computational complexity. Problem formulation also becomes
more complex than for ODEs, as we can have a pure initial value problem, a pure boundary
value problem, or a mixture of the two. Moreover, the equation and boundary data may be
defined over an irregular domain in space.

First, we establish some notation. For simplicity, we will deal only with single PDEs (as
opposed to systems of several PDEs) with only two independent variables (either two space
variables, which we denote by x and y, or one space and one time variable, which we denote by
x and t). In a more general setting, there could be any number of dimensions and any number
of equations in a coupled system of PDEs. We denote by u the unknown solution function to be
determined and its partial derivatives with respect to the independent variables by appropriate
subscripts: ux = ∂u/∂x, uxy = ∂2u/∂x∂y, etc.

3.10.1 Method of lines (for Heat equation)

[T, X, U] = PDE_HEAT_LINES(NX, NT, C, F) solves the heat equation D U/DT
= C D2 U/DX2 with the method of lines on [0,1]x[0,1]. Initial condition
is U(0,X) = F. C is a positive constant. NX is the number of space integration
intervals and NT is the number of time-integration intervals.

Parameters
NX X equispaced grid of NX intervals.
NT T equispaced grid of NX intervals.
C positive constant.

Returns
T equispaced grid of NT intervals.

26

X equispaced grid of NX intervals.
U solution array.

%Notice that we use beuler to integrate each ODE of this system. In fact if we are com-
puting the solution of the heat equation for example. After the finite difference approximation
we obtain the system y′ = Ay with A = tridiag(1,-2,1). The Jacobian matrix A of this system
has eigenvalues between 4c/(∆x)2 and 0, which makes the ODE very stiff as the spatial mesh
size ∆x becomes small. This stiffness, which is typical of ODEs derived from PDEs in this
manner, must be taken into account in choosing an ODE method for solving the semidiscrete
system.

3.10.2 2-D solver for Advection equation

Advection equation :

ut + cux = 0 (20)

[T, X, U] = PDE_ADVEC_EXP(N, DX, K, DT, C, F) solves the advection equation
D U/DT = -C D U/DX with the explicit method on [0,1]x[0,1]. Initial condition
is U(0,X) = F. C is a positive constant. N is the number of space integration
intervals and K is the number of time-integration intervals. DX is the size
of a space integration interval and DT is the size of time-integration intervals.

Parameters
NX number of space integration intervals.
DX size of a space integration interval.
NT number of time-integration intervals.
DT size of time-integration intervals.
C positive constant.
F initial condition U(0,X) = F(X).

Returns
T grid of NT intervals.
X grid of NX intervals.
U solution array.

[T, X, U] = PDE_ADVEC_IMP(N, DX, K, DT, C, F) solves the advection equation
D U/DT = -C D U/DX with the implicit method on [0,1]x[0,1]. Initial condition
is U(0,X) = F. C is a positive constant. N is the number of space integration
intervals and K is the number of time-integration intervals. DX is the size
of a space integration interval and DT is the size of time-integration intervals.

Parameters
NX number of space integration intervals.
DX size of a space integration interval.
NT number of time-integration intervals.
DT size of time-integration intervals.
C positive constant.

27

Figure 3: Solution of the Advection equation with x ∈ [0, 1] and t ∈ [0, 0.6].

F initial condition U(0,X) = F(X).

Returns
T grid of NT intervals.
X grid of NX intervals.
U solution array.

3.10.3 2-D solver for Heat equation

Heat equation :

ut = cuxx (21)

[T, X, U] = PDE_HEAT_EXP(N, DX, K, DT, C, F, ALPHA, BETA) solves the heat
equation D U/DT = C D2U/DX2 with the explicit method on [0,1]x[0,1]. Initial
condition is U(0,X) = F and boundary conditions are U(t,0) = ALPHA and U(t,1)
= beta. C is a positive constant. N is the number of space integration
intervals and K is the number of time-integration intervals. DX is the size
of a space integration interval and DT is the size of time-integration intervals.

Parameters
NX number of space integration intervals.
DX size of a space integration interval.
NT number of time-integration intervals.
DT size of time-integration intervals.
F initial condition U(0,X) = F(X).
C positive constant.

28

Returns
T grid of NT intervals.
X grid of NX intervals.
U solution array.

[T, X, U] = PDE_HEAT_IMP(N, DX, K, DT, C, F, ALPHA, BETA) solves the heat
equation D U/DT = C D2U/DX2 with the implicit method on [0,1]x[0,1]. Initial
condition is U(0,X) = F and boundary conditions are U(t,0) = ALPHA and U(t,1)
= beta. C is a positive constant. N is the number of space integration
intervals and K is the number of time-integration intervals. DX is the size
of a space integration interval and DT is the size of time-integration intervals.

Parameters
NX number of space integration intervals.
DX size of a space integration interval.
NT number of time-integration intervals.
DT size of time-integration intervals.
F initial condition U(0,X) = F(X).
C positive constant.

Returns
T grid of NT intervals.
X grid of NX intervals.
U solution array.

%The jacobian matrix of the semidiscrete system has eigenvalues between −4c/(∆x)2 and 0,
and hence the stability region for Euler’s method requires that the time step satisfy

∆t ≤
(∆x)2

2c
(22)

3.10.4 2-D solver for Wave equation

Wave equation :

utt = cuxx (23)

[T, X, U] = PDE_WAVE_EXP(N, DX, K, DT, C, F, G, ALPHA, BETA) solves the
wave equation D2U/DT2 = C D2U/DX2 with the explicit method on [0,1]x[0,1].
Initial condition is U(0,X) = F, D U/DT (0,X)= G(X) and boundary conditions
are U(t,0) = ALPHA and U(t,1) = beta. C is a positive constant. N is the
number of space integration intervals and K is the number of time-integration
intervals. DX is the size of a space integration interval and DT is the
size of time-integration intervals.

Parameters
NX number of space integration intervals.
DX size of a space integration interval.
NT number of time-integration intervals.

29

DT size of time-integration intervals.
F initial condition U(0,X) = F(X).
G initial condition D U/DT (0,X)= G(X).
C positive constant.

Returns
T grid of NT intervals.
X grid of NX intervals.
U solution array.

[T, X, U] = PDE_WAVE_IMP(N, DX, K, DT, C, F, G, ALPHA, BETA) solves the
wave equation D2U/DT2 = C D2U/DX2 with the implicit method on [0,1]x[0,1].
Initial condition is U(0,X) = F, D U/DT (0,X)= G(X) and boundary conditions
are U(t,0) = ALPHA and U(t,1) = beta. C is a positive constant. N is the
number of space integration intervals and K is the number of time-integration
intervals. DX is the size of a space integration interval and DT is the
size of time-integration intervals.

Parameters
NX number of space integration intervals.
DX size of a space integration interval.
NT number of time-integration intervals.
DT size of time-integration intervals.
F initial condition U(0,X) = F(X).
G initial condition D U/DT (0,X)= G(X).
C positive constant.

Returns
T grid of NT intervals.
X grid of NX intervals.
U solution array.

3.10.5 2-D solver for the Poisson Equation

Poisson equation :

uxx + uyy = f (x, y) (24)

POISSONFD two-dimensional Poisson solver [U, X, Y] = POISSONFD(A, C, B, D,
NX, NY, FUN, BOUND) solves by five-point finite difference scheme the problem
-LAPL(U) = FUN in the rectangle (A,B)x(C,D) with Dirichlet boundery conditions
U(X,Y)=BOUND(X,Y) for any (X, Y) on the boundery of the rectangle.

[U, X, Y, ERROR] = POISSONFD(A,C,B,D,NX,NY,FUN,BOUND,UEX) computes also the
maximum nodal error ERROR with respect to the exact solution UEX. FUN, BOUND
and UEX can be online functions.

Parameters

30

A, B
C, D rectangle (A,B)x(C,D) where the solution is computed.
NX X equispaced grid of NX intervals.
NY Y equispaced grid of NY intervals.
FUN
BOUND boundary condition.
UEX exact solution.

Returns
U solution array.
X equispaced grid of NX intervals.
Y equispaced grid of NY intervals.
ERROR maximum nodal error ERROR with respect to the exact solution UEX.

Figure 4: Solution of the Poisson equation with x ∈ [0, 1] and t ∈ [0, 1].

31

