Capítulo 4 - Problemas de Valores Próprios

Carlos Balsa

balsa@ipb.pt

Departamento de Matemática

Mestrados em Engenharia da Construção Métodos de Aproximação em Engenharia 1º Semestre 2011/2012

Carlos Balsa DeMat-ESTiG

Outline

Problemas de Valores Próprios

Problemas de Valores Próprios Valores e Vectores Próprios Interpretação Geométrica

Existência, Unicidade e Condicionamento

Polinómio Característico Transformações de Semelhança Condicionamento do Problema de Valores Próprios

Cálculo de Valores e Vectores Próprios

Método das Potencias e suas Variantes Considerações Finais

Problemas de Valores Próprios

- Problemas de valores próprios ocorrem em muitas áreas da ciência e da engenharia
- Valores próprios são igualmente importantes na análise de métodos numéricos
- Teoria e algoritmos aplicam-se tanto a matrizes reais como a matrizes complexas
- Para matrizes complexas utiliza-se a matriz transposta conjugada, A^H, em vez da transposta, A^T

Carlos Balsa DeMat-ESTiG

Valores e Vectores Próprios

▶ Problema de valores próprios típico: dada uma matriz A, $n \times n$, encontrar um escalar λ e e um vector não-nulo x tal que

$$Ax = \lambda x$$

- λ é valor próprio e x o vector próprio correspondente
- λ pode ser complexo mesmo que A seja real
- ▶ Espectro= λ (A) =conjunto de todos os valores próprios de A
- ▶ Raio espectral= ρ (A) = max { $|\lambda|$: $\lambda \in \lambda$ (A)}
- Existe também o chamado problema de valores próprios à esquerda

$$y^T A = \lambda y^T$$

contudo não abordaremos este assunto neste curso

Interpretação Geométrica

- Quando se multiplica uma matriz por um vector resulta um novo vector que geralmente tem uma nova direcção, um novo comprimento e sentido
- Mas resulta apenas na expansão ou redução (mudança de cumprimento e possivelmente de sentido) se o vector original estiver na direcção de um dos vectores próprios da matriz
- Factor de expansão ou de contracção é dado pelo valor próprio correspondente
- ▶ Escala de um vectores próprios pode ser mudada arbitrariamente: se $Ax = \lambda x$, então $A(\gamma x) = \lambda(\gamma x)$ para qualquer escalar γ , pelo que γx é também um vector próprio correspondente a λ
- Vectores próprios são usualmente normalizados pela imposição de que a sua norma seja igual a 1

Polinómio Característico

Polinómio Característico

A equação $Ax = \lambda x$ é equivalente a

$$(A - \lambda I) x = 0$$

que tem solução não-nula x se, e apenas se, a matriz $A - \lambda I$ for singular

Valores próprios de A são raízes λ_i do polinómio característico

$$\det\left(A-\lambda I\right)=0$$

- Teorema Fundamental da Algebra implica que uma matriz A, n × n, tenha sempre n valores próprios, mas estes poderão não ser reais ou distintos uns dos outros
- ▶ Valores próprios complexos de matrizes reais ocorrem sempre aos pares conjugados: se $\alpha + \beta i$ é um valor próprio de uma matriz real, então $\alpha \beta i$ também o é, sendo $i = \sqrt{-1}$

Exemplo 1: Polinómio Característico

▶ Determinar os valores próprios de $\begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix}$

$$\det\left(\left[\begin{array}{cc} 3 & -1 \\ -1 & 3 \end{array}\right] - \lambda \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]\right) =$$

$$\det\left(\left[\begin{array}{cc} 3 - \lambda & -1 \\ -1 & 3 - \lambda \end{array}\right]\right) =$$

$$(3 - \lambda)(3 - \lambda) - (-1)(-1) = \lambda^2 - 6\lambda + 8 = 0$$

então os valores próprios são dados por

$$\lambda = \frac{6 \pm \sqrt{36 - 32}}{2} \quad \text{ou} \quad \lambda_1 = 2, \quad \lambda_2 = 4$$

Polinómio Característico

Polinómio Característico, continuação

- Não existe nenhuma formula para calcular directamente as raízes de um polinómio de grau maior do que quatro
- Quando n > 4 utilizam-se métodos iterativos para calcular os valores próprios
- Métodos baseados no polinómio característico não são utilizados na prática por implicarem muito trabalho e por serem muito sensíveis aos valores dos coeficientes do polinómio
- Polinómio característico é um instrumento teórico muito importante mas não é normalmente utilizado computacionalmente

Alguns Tipos de Matrizes Importantes

•00 0000

Propriedades	Definição
diagonal	$a_{ij} = 0$ para $i \neq j$
tridiagonal	$a_{ij} = 0$ para $ i - j > 1$
triangular	$a_{ij} = 0$ para $i > j$ (superior)
	$a_{ij} = 0$ para $i < j$ (inferior)
orthogonal	$A^T A = A A^T = I$
unitária	$A^HA = AA^H = I$
simétrica	$A = A^T$
hermitiana	$A = A^H$
normal	$AA^H = A^H A$

- Valores próprios de matriz diagonal são os próprios elementos da diagonal
- Valores próprios de matriz triangular são os elementos da diagonal
- Matriz com n valores próprios distintos possui n vectores próprios linearmente independentes

Transformação de Semelhança

000

▶ Duas matrizes A e B, de dimensão $n \times n$, são semelhantes se existir uma matriz T, não-singular, tal que

$$T^{-1}AT = B$$

- Como duas matrizes semelhantes possuem os mesmos valores próprios, tenta-se transformar a matriz original A numa matriz B cuja estrutura permita calcular mais facilmente os seus valores próprios
- ► Se uma matriz A, n × n, tiver exactamente n vectores próprios linearmente independentes então é diagonalizavel

$$X^{-1}AX = D$$

em que X é a matriz não-singular constituída pelos vectores próprios de A, e D uma matriz diagonal cujas entradas são os valores próprios de A

Transformação de Semelhança, continuação

- Uma matriz normal é unitariamente (X é unitária) semelhante a uma matriz diagonal D
- Uma matriz simétrica é ortogonalmente (X é orthogonal) semelhante a uma matriz real-diagonal D
- Se a matriz não for normal ela não pode ser reduzida a uma matriz diagonal mas, no entanto, pode ser reduzida a uma matriz triangular através de uma transformação de semelhança unitária (T é unitária)

Carlos Balsa DeMat-ESTiG

Condicionamento do Problema de Valores Próprios

- Condicionamento de um problemas de valores próprios é a sensibilidade de valores e vectores próprios a pequenas mudanças na matriz
- Supondo que A é uma matriz não-defectiva, com valores próprios $\lambda_1, \lambda_2, \ldots, \lambda_n$, e conjunto completo de vectores próprios linearmente independentes x_1, x_2, \ldots, x_n que formam as colunas de uma matriz não-singular $X = [x_1x_2 \ldots x_n]$ tal que $X^{-1}AX = D$; se μ for um valor próprio da matriz perturbada A + E e λ_k o vector próprio de A mais próximo de μ , verifica-se que

$$|\mu - \lambda_k| \le ||X^{-1}||_2 \cdot ||X||_2 \cdot ||E||_2 = \operatorname{cond}_2(X) ||E||_2$$

- Valores próprios podem ser muito sensíveis se os vectores próprios forem aproximadamente linearmente dependentes
- ► Vectores próprios de um matriz normal ($AA^H = A^HA$) são ortogonais, pelo que os valores próprios são bem condicionados

Condicionamento do Problema de Valores Próprios, continuação

- Nem todos os valores próprios têm a mesma sensibilidade a perturbações na matriz; formula anterior pode levar a sobrevalorizar o condicionamento de todos os valores próprios
- Supondo que Δλ é o erro associado a um valor próprio λ em resultado de uma perturbação E introduzida na matriz A, verifica-se

$$|\Delta \lambda| \le \frac{\|y\|_2 \cdot \|x\|_2}{|y^H x|} \|E\|_2 = \frac{1}{\cos(\theta)} \|E\|_2$$

em que θ é o ângulo entre o vector próprio à direita x e o vector próprio à esquerda y correspondentes ao valor próprio λ .

 Como nas matrizes simétricas e hermitianas os vectores próprios à direita e à esquerda são iguais, os valores próprios destas matrizes são bem condicionados Condicionamento do Problema de Valores Próprios

Exemplo 2: Condicionamento do Problema de Valores Próprios

Considere a matriz

$$A = \begin{bmatrix} -149 & -50 & -154 \\ 537 & 180 & 546 \\ -27 & -9 & -25 \end{bmatrix}$$

- 1 Verifique se A matriz é normal ou não
- 2 Verifique se A diagonalizavel
- 3 Altere a entrada *a*₂₂ para 180.01 e recalcule os seus valores próprios. O que observa?
- 4 Altere a entrada *a*₂₂ para 179.99 e recalcule os seus valores próprios. O que observa?

Condicionamento do Problema de Valores Próprios

Exemplo 1, resolução

Problemas de Valores Próprios

- 1 Matriz A não é normal pois $AA^T \neq A^T A$, efectivamente $||AA^T A^T A||_2 = 6.69e + 6$
- 2 Como os valores próprios de A são distintos, $\lambda_1=1,\ \lambda_2=2$ e $\lambda_3=3$, os seus vectores próprios são todos linearmente independentes e como tal A é diagonalizavel
- 3 Se a entrada a_{22} for mudada para 180.01 obtemos $\lambda_1=0.207$, $\lambda_2=2.301$ e $\lambda_3=3.502$, o que consiste numa mudança substancial dada a pequena variação efectuada numa única entrada
- 4 Se a entrada a_{22} for mudada para 179.99 obtemos $\lambda_1 = 1.664 + 1.054i$, $\lambda_2 = 1.664 1.054i$ e $\lambda_3 = 2.662$, mais uma vez um pequena variação efectuada numa única entrada resulta na transformação de dois valores próprios da matriz original, bem distintos, num par de valores próprios conjugados

Método das Potencias

- Método mais simples para calcular um par próprio (um valor e um vector próprio) é o método das potencias, que multiplica repetidamente um vector inicial pela matriz A
- Admitindo que A tem um único vector próprio de maior módulo, designado por λ₁, cujo vector próprio correspondente é v₁
- \blacktriangleright Então, iniciando com o vector não-nulo x_0 , o esquema iterativo

$$x_k = Ax_{k-1}$$

converge para um múltiplo do vector próprio v_1 correspondente ao valor próprio dominante λ_1

Método das Potencias

 Para compreender a razão do método convergir para o vector próprio associado ao valor próprio dominante exprimimos o vector inicial como combinação linear

$$x_0 = \sum_{i=1}^n \alpha_i v_i$$

em que os *v_i* são os vectores próprios de *A*

▶ Então, tendo em conta que $A^k v_i = \lambda_i^k v_i$, verifica-se

$$x_k = Ax_{k-1} = A^2x_{k-2} = \ldots = A^kx_0 = A^k\sum_{i=1}^n \alpha_i v_i$$

$$\sum_{i=1}^{n} \alpha_{i} \mathbf{A}^{k} \mathbf{v}_{i} = \sum_{i=1}^{n} \alpha_{i} \lambda_{i}^{k} \mathbf{v}_{i} = \lambda_{1}^{k} \left(\alpha_{1} \mathbf{v}_{1} + \sum_{i=2}^{n} (\lambda_{i} / \lambda_{1})^{k} \alpha_{i} \mathbf{v}_{i} \right)$$

▶ Uma vez que $|\lambda_i/\lambda_1|$ < 1, para i > 1, potencias crescentes

Problemas de Valores Próprios

Exemplo 2: Método das Potencias

- Rácio entre duas aproximações consecutivas de uma componente qualquer de x_k não-nula converge para o valor próprio dominante λ₁
- ▶ Por exemplo se $A = \begin{bmatrix} 1.5 & 0.5 \\ 0.5 & 1.5 \end{bmatrix}$ e $x_0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, obtemos

k	\mathbf{x}_{k}^{T}		rácio
0	0.0	1.0	
1	0.5	1.5	1.500
2	1.5	2.5	1.667
3	3.5	4.5	1.800
4	7.5	8.5	1.889
5	15.5	16.5	1.941
6	31.5	32.5	1.970
7	63.5	64.5	1.985
8	127.5	128.5	1.992

Carlos Balsa DeMat-ESTiG

Limitações do Método das Potencias

Método das potencias pode falhar por várias razões:

- x_0 não ter componente na direcção de v_1 (i.e $\alpha_1 = 0$) na prática não há problemas porque os erros de arredondamento acabam por introduzir essa componente
- Pode haver mais do que um valor próprio que tenha a mesma magnitude (máxima) em módulo, neste caso as iterações vão convergir para um vector que é combinação linear dos vectores próprios associados aos valores próprios dominantes
- Para matriz e vector inicial reais as iterações podem nunca convergir para vectores próprios complexos

Método das Potencias Normalizadas

- ► Crescimento geométrico das componentes en cada iteração pode provocar *overflow* (ou *underflow* se $\lambda_1 < 1$)
- Vector próprio aproximado tem de ser normalizado em cada iteração, exigindo por exemplo que o módulo da sua maior componente seja igual a 1, resultando a iteração

$$y_k = Ax_{k-1}$$

$$x_k = y_k / \|y_k\|_{\infty}$$

▶ Com a normalização: $\|y_k\|_{\infty} \to |\lambda_1|$ e $x_k \to v_1/\|v_1\|_{\infty}$

Exemplo 3: Método das Potencias Normalizadas

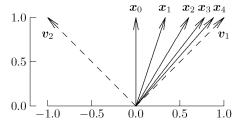
 Vamos repetir o exemplo anterior com a normalização das potencias

k	X_k^T		$\ y_k\ _{\infty}$
0	0.000	1.0	
1	0.333	1.0	1.500
2	0.600	1.0	1.667
3	0.778	1.0	1.800
4	0.882	1.0	1.889
5	0.939	1.0	1.941
6	0.969	1.0	1.970
7	0.984	1.0	1.985
8	0.992	1.0	1.992

Carlos Balsa DeMat-ESTiG

Interpretação Geométrica

Descrição geométrica do método das potencias



- ▶ Vector inicial $x_0 = v_1 + v_2$ contém igual componentes nos vectores próprios v_1 e v_2 (vectores a tracejado)
- ▶ Repetição da multiplicação por A faz com que a componente em v_1 (correspondente ao maior valor próprio, 2) seja dominante, pelo que a sequência de vectores x_k convergem para v_1

Método das Potencias com Shift

- ▶ Translação do espectro (*shift*): se $Ax = \lambda x$ e σ um escalar, então $(A \sigma I)x = (\lambda \sigma)x$, pelo que os valores próprios de uma matriz translada são os valores próprios transladados e o vectores próprios são os mesmos
- ▶ Taxa de convergência do método das potencias depende de $|\lambda_2/\lambda_1|$, em que λ_2 é o segundo maior valor próprio em módulo
- ▶ Escolhendo um *shift* adequado, $A \sigma I$, tal que

$$\left|\frac{\lambda_2 - \sigma}{\lambda_1 - \sigma}\right| < \left|\frac{\lambda_2}{\lambda_1}\right|$$

é possível acelerar a convergência

No fim do processo iterativo o shift tem de ser adicionado ao resultado de forma a recuperar o valor próprio da matriz original Problemas de Valores Próprios

Método da Iteração Inversa

- ▶ Inversão: Se *A* é não-singular e $Ax = \lambda x$ com $x \neq 0$, então $\lambda \neq 0$ e $A^{-1}x = (1/\lambda)x$, assim os valores próprios da inversa são os reciprocos dos valores próprios da matriz original
- Se procuramos o valor próprio de menor magnitude da matriz A aplicamos o método das potencias multiplicando sucessivamente por A^{-1} em vez de A
- Isto conduz ao esquema da iteração inversa

$$y_k = A^{-1} x_{k-1}$$
$$x_k = y_k / \|y_k\|_{\infty}$$

- ► Em geral a inversa de A não é calculada explicitamente, em vez disso resolve-se em cada iteração o sistema de equações lineares $Ay_k = x_{k-1}$
- Se A for factorizada no inicio, essa decomposição poderá ser usada para a resolução do sistema em cada iteração

Método da Iteração Inversa, continuação

- Iteração inversa converge para os vectores próprios associados aos valores próprios de menor magnitude de A
- Valor próprio obtido é o dominante de A⁻¹, consequentemente o seu reciproco é o valor próprio de menor magnitude A

Carlos Balsa DeMat-ESTiG

Problemas de Valores Próprios

Exemplo 4: Método da Iteração Inversa

 Aplicando o método da iteração inversa ao exemplo anterior para calcular o valor próprio de menor magnitude obtemos a sequência

k	X_k^T		$\ y_k\ _{\infty}$
0	0.000	1.0	
1	-0.333	1.0	0.750
2	-0.600	1.0	0.833
3	-0.778	1.0	0.900
4	-0.882	1.0	0.944
5	-0.939	1.0	0.971
6	-0.969	1.0	0.985

que converge para 1 (que é o seu próprio reciproco neste caso)

Iteração Inversa com Shift

- Tal como antes, estratégia da translação, trabalhar com A σI
 para um dado escalar σ, pode acelerar consideravelmente a
 convergência
- Iteração inversa é particularmente útil para calcular vectores próprios associados a valores próprios dos quais se dispõe de valores aproximados, pois esta vai convergir rapidamente quando aplicada à matriz translada A – λI se λ for um valor próprio aproximado
- lteração inversa é também útil para calcular o valor próprio mais próximo de um dado valor β , pois se β for usado como *Shift* a iteração inversa irá convergir para o valor próprio de menor magnitude ($\lambda \beta$) da matriz transladada

Quociente de Rayleigh

▶ Dado um vector próprio aproximado x de uma matriz real A, a determinação da melhor estimativa do valor próprio associado λ pode ser considerado como um problema de mínimos quadrados lineares de dimensão $n \times 1$

$$x\lambda \cong Ax$$

Através da equação normal $x^T x \lambda = x^T A x$ obtemos a solução

$$\lambda = \frac{\mathbf{x}^T \mathbf{A} \mathbf{x}}{\mathbf{x}^T \mathbf{x}}$$

 Esta quantidade, conhecida como quociente de Rayleigh, tem muitas propriedades úteis

Iteração do Quociente de Rayleigh

- Dado um vector próprio aproximado, o quociente de Rayleigh proporciona uma boa estimativa do valor próprio correspondente
- Por outro lado, a iteração inversa (com shift) converge rapidamente para o vector próprio se utilizarmos uma boa aproximação do valor próprio como shift
- Estas duas ideias são combinadas na Iteração do Quociente de Rayleigh

$$\sigma_k = x_k^T A x_k / x_k^T x_k$$
$$(A - \sigma_k I) y_{k+1} = x_k$$
$$x_{k+1} = y_{k+1} / \|y_{k+1}\|_{\infty}$$

começando com um vector não nulo x₀

Iteração do Quociente de Rayleigh, continuação

- Quociente de Rayleigh é especialmente eficiente em matrizes simétricas
- Devido ao facto do shift mudar em cada iteração a matriz tem de ser refactorizada em cada iteração, isto aumenta de forma considerável os custos computacionais a menos que a matriz tenha alguma forma especial que facilitem a sua factorização
- Estas ideias funcionam também com matrizes complexas, para as quais a transposta tem de ser substituída pela transposta conjugada, pelo que o quociente Rayleigh será x^HAx/x^Hx

Carlos Balsa DeMat-ESTIG

Problemas de Valores Próprios

Exemplo 5: Iteração do Quociente de Rayleigh

Aplicando o método da iteração do quociente de Rayleigh à matriz anterior e partido de um vector inicial x_0 gerado aleatoriamente, a convergência é obtida em duas iterações

k	X_k^T		σ_{k}
0	0.807	0.397	1.896
1	0.924	1.000	1.998
2	1.000	1.000	2.000

Carlos Balsa DeMat-ESTiG

Iterações Simultâneas

- Método das iterações simultâneas é o método mais simples para a obtenção de vários pares de valores e vectores próprios, consiste em repetir sequencialmente a multiplicação da matriz por um conjunto de vectores
- Partindo de um conjunto de p vectores reunidos numa matriz X₀ de dimensão n × p e característica p, o esquema iterativo é

$$X_k = AX_{k-1}$$

- X_k converge para uma base do subspaço gerado pelos p vectores próprios associados aos p valores próprios dominantes de A, pelo que é também conhecido por iteração de subspaço
- ▶ Supondo $|\lambda_1| > |\lambda_2| > \cdots > |\lambda_n|$, o método irá convergir se $|\lambda_n| > |\lambda_{n+1}|$

Ortonormalização

- ▶ Um conjunto de vectores reais *n*-dimensionais $q_1, q_2, ..., q_m$ é ortonormal se ${q_i}^T q_i = 1$ e ${q_i}^T q_j = 0$ se $i \neq j$
- Partindo de um conjunto de vectores reais *n*-dimensionais x₁, x₂, ..., x_m linearmente independentes e geradores de um determinado subspaço, é possível obter um conjunto de vectores ortonormais q₁, q₂, ..., q_m, geradores do mesmo subspaço
- Processo de ortonormalização de Gram-Shmidt consiste em percorrer sequencialmente os vectores x_i, normalizando-os e removendo-lhes as componentes associadas aos vectores anteriores
- Na forma matricial o processo é designado por factorização QR, assim se X for a matriz dos vectores a ortonormalizar

$$X = QR$$

em que a matriz Q é ortogonal ($Q^TQ = QQ^T = I$) e R é triangular superior

Iteração Ortogonal

- Tal como no método das potências a normalização também é necessária para o método da iteração simultânea
- Cada coluna de X_k converge para o vector próprio dominante, pelo que as suas colunas ficam cada vez mais linearmente dependente e consequentemente o problema é cada vez mais mal condicionado
- Prevenção destes problemas faz-se orthonormalizando as colunas de X_k em cada iteração, isto é, efectuando a sua factorização QR

$$Q_k R_k = X_{k-1}$$

$$X_k = AQ_k$$

em que $Q_k R_k$ é a factorização QR de X_k

Iteração QR

▶ Para p = n as $X_0 = I$, as matrizes

$$A_k = Q_k^H A Q_k$$

geradas pela iteração ortogonal converge para uma forma triangular (ou triangular por blocos) das quais se extrai facilmente todos os valores próprios de *A*

- Iteração QR calcula as sucessivas matrizes A_k sem que o produto acima seja efectuado explicitamente
- Iniciando com A₀ = A, na iteração k efectua a factorização QR

$$Q_k R_k = A_{k-1}$$

e forma o produto contrario

$$A_k = R_k Q_k$$

Iteração QR, continuação

 Sucessivas matrizes A_k são unitariamente semelhantes umas às outras

$$A_k = R_k Q_k = Q_k^H A_{k-1} Q_k$$

- As entradas diagonais de A_k (ou valores próprios dos blocos diagonais) vão convergir para os valores próprios de A
- ▶ Produto das matrizes ortogonais $Q_k Q_{k-1} ... Q_1$ converge para os vectores próprios de A
- ightharpoonup Se A for simétrica, matriz A_k converge para uma matriz diagonal

Exemplo 6: Iteração QR

- Calcular a factorização QR

$$A_0 = Q_1 R_1 = \begin{bmatrix} 0.962 & -0.275 \\ 0.275 & 0.962 \end{bmatrix} \begin{bmatrix} 7.28 & 3.02 \\ 0 & 3.30 \end{bmatrix}$$

e formar o produto contrario

$$A_1 = R_1 Q_1 = \left[\begin{array}{cc} 7.830 & 0.906 \\ 0.906 & 3.170 \end{array} \right]$$

- Entradas fora da diagonal são agora mais pequenas e entradas na diagonal próximas dos valores próprios 8 e 3
- Processo continua até convergir impondo, por exemplo, que as entradas fora da diagonal sejam inferiores a uma determinada tolerância, verificando-se então uma boa aproximação das entradas da diagonal aos valores próprios de A

Considerações Finais

Problema de Valores Próprios Generalizado

Problema de Valores Próprios Generalizado tem a forma

$$Ax = \lambda Bx$$

em que A e B são matrizes conhecidas.

- Na engenharia de estruturas A é designada por matriz de rigidez e B por matriz de massa
- Se ambas as matrizes A e B não forem singulares, o problema de valores próprios generalizado pode ser convertido num dos clássicos problemas de valores próprios:

$$(B^{-1}A)x = \lambda x$$
 ou $(A^{-1}B)x = 1/\lambda x$

Se A e B são simétricas e uma delas é positiva definida, a simetria pode ser preservada através da factorização de Cholesky; por exemplo se B = LL^T o problema pode ser reescrito como

$$\left(L^{-1}AL^{-T}\right)y = \lambda y$$

em que x é recuperado resolvendo $L^T x = v$

Outros Métodos e Software

- Existe uma classe de métodos designados por métodos do subspaço de Krylov especialmente adaptados a resolução de problemas de grande dimensão em que a matriz dos coeficientes é esparsa (consultar bibliografia):
 - Método de Lanczos: para matrizes simétricas ou hermitianas
 - Método de Arnoldi: para matrizes não-simétricas e não-hermitianas
- Funções disponíveis no Octave para o cálculo de valores próprios:
 - ► Iteração QR: [V, lambda] = eig(A)
 - ► Métodos de Krylov: [V, D, flag] = eigs (A, ...)

Métodos Disponíveis na NMLibforOctave

Na biblioteca NMLibforOctave encontram-se programados os seguintes métodos:

- ▶ Método das potências: [LAMBDA, V, NBIT] = eig_power(A, X0, ITMAX, TOL)
- Iteração inversa:[LAMBDA, V, NBIT] = eig_inverse(A, X0, ITMAX, TOL)
- Iteração dos quocientes de Rayleigh: [LAMBDA, V, NBIT] = eig_rayleigh(A, X0, ITMAX, TOL)
- Iteração ortogonal: [LAMBDA, V, NBIT] = eig_ortho(A, X0, ITMAX, TOL)
- ► Iteração QR: [LAMBDA, V, NBIT] = eig_qr(A, ITMAX, TOL)

Considerações Finais

Bibliografia

Exposição baseada essencialmente no capítulo 4 de

Michael T. Heath. "Scientific Computing an Introductory Survey". McGraw-Hill, 2002, New York.

Carlos Balsa DeMat-ESTiG