Capítulo 2

Derivação

Geometria das Funções Escalares em \mathbb{R}^2 e \mathbb{R}^3 . 2.1

Exercício 2.1.1

Para a função escalar $f(x,y) = 9 - x^2 - y^2$, esboce as curvas de nível: f(x,y) = 0, f(x,y) = 5e f(x, y) = 8.

Exercício 2.1.2

Para as seguintes funções, esboce os conjuntos de nível c, para os valores de c indicados. Consegue representar o gráfico de cada função?

a.
$$f(x,y) = 4 - 3x + 2y$$
, $c = -2, -1, 0, 1, 2$. b. $f(x,y) = x/y$, $c = -2, -1, 0, 1, 2$.

b.
$$f(x,y) = x/y$$
, $c = -2, -1, 0, 1, 2$

c.
$$f(x,y) = y^2 - x^2$$
, $c = -1, 0, 1$

c.
$$f(x,y) = y^2 - x^2$$
, $c = -1,0,1$.
d. $f(x,y) = y - x^2$, $c = -1,0,1$.

e.
$$f(x,y) = x^2 + xy$$
, $c = -2, -1, 0, 1, 2$.
f. $f(x,y) = (x-1)(y-2)$, $c = -1, 0, 1$.

f.
$$f(x,y) = (x-1)(y-2)$$
, $c = -1, 0, 1$.

Exercício 2.1.3

Represente algumas superfícies de nível de cada uma das funções seguintes.

a.
$$f: \mathbb{R}^3 \to \mathbb{R}, \ (x, y, z) \mapsto -x^2 - y^2 - z^2.$$

b.
$$f: \mathbb{R}^3 \to \mathbb{R}, \ (x, y, z) \mapsto 4x^2 + y^2 + 9z^2$$
.

c.
$$f: \mathbb{R}^3 \to \mathbb{R}, \ (x, y, z) \mapsto x^2 + y^2.$$

Exercício 2.1.4

Usando coordenadas polares descreva as curvas de nível da função dada por:

$$f(x,y) = 2xy/(x^2 + y^2)$$
 se $(x,y) \neq (0,0)$, $f(0,0) = 0$.

Exercício 2.1.5

Seja $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ dada em coordenadas polares por $f(r,\theta) = \cos(2\theta)/r^2$. Represente, no plano cartesiano, algumas curvas de nível de f.

2.2Derivadas Parciais. Função Derivada. Plano Tangente. Vector Gradiente.

Exercício 2.2.1

Calcule $\partial f/\partial x$ e $\partial f/\partial y$, para:

a.
$$f(x,y) = (x^2 + y^2) \ln (x^2 + y^2)$$

b.
$$f(x,y) = \cos(ye^{xy})\sin x$$

c.
$$f(x,y) = e^{xy} \ln(x^2 + y^2)$$

d.
$$f(x,y) = xy/\sqrt{x^2 + y^2}$$

Exercício 2.2.2

Determine uma equação do plano tangente à superfície $z = x^2 + y^3$ no ponto P = (3, 1, 10).

Exercício 2.2.3

Determine uma equação do plano tangente ao gráficos das funções seguintes nos pontos indicados.

a.
$$f(x,y) = xy$$
, $P = (0,0)$

b.
$$f(x,y) = e^{xy}, P = (0,1)$$

c.
$$f(x,y) = x \cos x \cos y, \ P = (0,\pi)$$

d.
$$f(x,y) = (x^2 + y^2) \ln (x^2 + y^2)$$
, $P = (0,1)$

Exercício 2.2.4

Calcule a matriz das derivadas parciais das seguintes funções.

a.
$$f: \mathbb{R}^2 \to \mathbb{R}^2, \ f(x,y) = (x,y)$$

b.
$$f: \mathbb{R}^2 \to \mathbb{R}^2, \ f(x,y) = (y,x)$$

c.
$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
, $f(x, y, z) = (x + e^z + y, yx^2)$

c.
$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
, $f(x, y, z) = (x + e^z + y, yx^2)$ d. $f: \mathbb{R}^2 \to \mathbb{R}^3$, $f(x, y) = (xe^y + \cos y, x, x + e^y)$

e.
$$f: \mathbb{R}^2 \to \mathbb{R}^3, \ f(x,y) = (xye^{xy}, x\sin y, 5xy^2)$$

Exercício 2.2.5

Para as funções nas alíneas do exercício anterior, calcule $\mathbf{D}f(P)$ para:

a
$$P = (2.1)^{\circ}$$

b.
$$P = (2, 1)$$

c.
$$P = (1, 2, 0)$$

a.
$$P = (2,1)$$
 b. $P = (2,1)$ c. $P = (1,2,0)$ d. $P = (0,\pi/2)$ e. $P = (1,\pi)$

$$P = (1 \pi)$$

Exercício 2.2.6

Calcule o vector gradiente de cada uma das seguintes funções:

a.
$$f(x, y, z) = xe^{(-x^2 - y^2 - z^2)}$$

b.
$$f(x, y, z) = z^2 e^x \cos y$$

c.
$$f(x, y, z) = \frac{xyz}{x^2 + y^2 + z^2}$$

2.3 Introdução aos Caminhos e Curvas no Plano e no Espaço.

Exercício 2.3.1

Represente geometricamente as curvas, no plano ou no espaço, que são as imagens dos caminhos

a.
$$\mathbf{c}(t) = 2\sin t \,\mathbf{i} + 4\cos t \,\mathbf{j}, \ 0 \le t \le 2\pi.$$
 b. $\mathbf{c}(t) = (-t, 2t, 1/(t+1)), \ 0 \le t \le 3.$

b.
$$\mathbf{c}(t) = (-t, 2t, 1/(t+1)), \ 0 \le t \le 3.$$

c.
$$\mathbf{c}(t) = \sin t \, \mathbf{i} + \cos t \, \mathbf{j} + t \, \mathbf{k}, \ 0 \le t \le 2\pi.$$
 d. $\mathbf{c}(t) = (t, t^2, t^3), \ 0 \le t \le 2.$

d.
$$\mathbf{c}(t) = (t, t^2, t^3), \ 0 \le t \le 2.$$

Exercício 2.3.2

Calcule o vector velocidade no instante t para cada um dos caminhos seguintes.

a.
$$\mathbf{c}(t) = 6t \, \mathbf{i} + 3t^2 \, \mathbf{j} + t^3 \, \mathbf{k}, \ t \in \mathbb{R}.$$
 b. $\mathbf{c}(t) = (4e^t, 6t^4, \cos t), \ t \in \mathbb{R}.$

b.
$$\mathbf{c}(t) = (4e^t, 6t^4, \cos t), \ t \in \mathbb{R}.$$

Exercício 2.3.3

Calcule a recta tangente ao caminho \mathbf{c} no instante t indicado.

a.
$$\mathbf{c}(t) = \sin 3t \, \mathbf{i} + \cos 3t \, \mathbf{j} + 2t^{5/2} \, \mathbf{k}, \ t = 1.$$
 b. $\mathbf{c}(t) = (\cos^2 t, 3t - t^3, t), \ t = 0.$

b.
$$\mathbf{c}(t) = (\cos^2 t, 3t - t^3, t), \ t = 0.$$

Exercício 2.3.4

Calcule um vector tangente, no instante t, a cada um dos caminhos seguintes.

a.
$$\mathbf{c}(t) = e^t \mathbf{i} + \cos t \mathbf{j}, \ t \in \mathbb{R}.$$

b.
$$\mathbf{c}(t) = (t \sin t, 4t), \ t \in \mathbb{R}.$$

Exercício 2.3.5

Neste exercício suponha que um partícula se movimenta seguindo a trajectória descrita pelo caminho \mathbf{c} e no instante t_0 sai da trajectória e segue pela tangente ao caminho. Calcule a posição da partícula no instante t_1 , dado.

a.
$$\mathbf{c}(t) = (t^2, t^3 - 4t, 0), t_0 = 2, t_1 = 3.$$
 b. $\mathbf{c}(t) = (e^t, e^{-t}, \cos t), t_0 = 1, t_1 = 2.$

b.
$$\mathbf{c}(t) = (e^t, e^{-t}, \cos t), t_0 = 1, t_1 = 2$$

c.
$$\mathbf{c}(t) = (4e^t, 6t^2, \cos t), t_0 = 0, t_1 = 1$$

c.
$$\mathbf{c}(t) = (4e^t, 6t^2, \cos t), t_0 = 0, t_1 = 1.$$
 d. $\mathbf{c}(t) = (\sin e^t, t, 4 - t^2), t_0 = 1, t_1 = 2.$

2.4Propriedades da Derivada. Regra da Cadeia.

Exercício 2.4.1

Calcule $\frac{\partial w}{\partial x}$ e $\frac{\partial w}{\partial y}$ directamente e usando a regra da cadeia.

a.
$$w = u\sin(v)$$
; $u = x^2 + y^2$; $v = xy$.
b. $w = e^{uv}$; $u = x\ln(y)$; $v = 2x + y$

b.
$$w = e^{uv}$$
; $u = x \ln(y)$; $v = 2x + y$

12 Derivação

Exercício 2.4.2

Use a regra da cadeia para determinar a derivada de $h: \mathbb{R}^2 \to \mathbb{R}, \ h(x,y) = f(u(x,y),v(x,y)),$ onde

$$f(u,v) = \frac{u^2 + v^2}{u^2 - v^2}, \quad u(x,y) = e^{-x-y}, \quad v(x,y) = e^{xy}.$$

Exercício 2.4.3

Calcule as derivadas seguintes directamente e usando a regra da cadeia.

a.
$$\frac{\partial r}{\partial u}$$
, $\frac{\partial r}{\partial v}$ e $\frac{\partial r}{\partial t}$, onde $r = w\cos(z)$; $w = u^2vt$; $z = ut^2$.

b.
$$\frac{dw}{dt}$$
, onde $w = x^3 - y^3$; $x = e^{-2t}$; $y = 3t^2$.

Exercício 2.4.4

Verifique a regra da cadeia para a composição $(f \circ \mathbf{c})$ nos seguintes casos:

1.
$$f(x,y) = e^{xy}$$
, $\mathbf{c}(t) = (3t^2, t^3)$

2.
$$f(x,y) = (x^2 + y^2) \sqrt{x^2 + y^2}$$
, $\mathbf{c}(t) = (e^t, e^{-t})$

3.
$$f(x,y) = xe^{x^2+y^2}$$
, $\mathbf{c}(t) = (t,-t)$

Exercício 2.4.5

Nas alíneas seguintes alíneas determine a expressão das funções compostas h e use a regra da cadeia para calcular as derivadas $\mathbf{D}h$ nos pontos indicados.

a.
$$h(x,y) = (f \circ g)(x,y)$$
 e **D** $h(1,1)$, onde

$$f(u,v) = (\tan(u-1) - e^u, u^2 - v^2), \quad g(x,y) = (e^{x-y}, x - y).$$

b.
$$h(x,y) = (f \circ g)(x,y)$$
 e **D** $h(0,0)$, onde

$$f(u, v, w) = (e^{u-w}, \cos(u+v) + \sin(u+v+w)), \quad g(x, y) = (e^x, \cos(y-x), e^{-y}).$$

Exercício 2.4.6

Determine as derivadas $\frac{\partial}{\partial s}(f \circ \mathbf{F})(1,0)$ e $\frac{\partial}{\partial t}(f \circ \mathbf{F})(1,0)$, onde $f(u,v) = \cos u \sin v$ e $\mathbf{F} : \mathbb{R}^2 \to \mathbb{R}^2$ é dada por $\mathbf{F}(s,t) = (\cos(t^2s), \ln \sqrt{1+s^2})$.

Exercício 2.4.7

Resolva os seguintes exercícios.

a. A areia vaza de um recipiente por um orifício à taxa de $6cm^3/min$. Ao vazar, a areia vai formando um cone circular recto cujo raio da base aumenta à razão de 0.25cm/min. Se, no instante em que já vazaram $40cm^3$, o raio é 15cm, determine a taxa de crescimento da altura do cone. (nota: deve usar a regra da cadeia para resolver este problema)

- b. Suponha que dentro de um aquário, a temperatura da água é dada por $T = x^2 e^y xy^3$. Se um peixe nadar segundo a trajectória descrita pelo caminho $\mathbf{c}(t) = \cos t \, \mathbf{i} + \sin t \, \mathbf{j}$ determine a taxa de variação instantânea da temperatura em cada instante, dT/dt(t), a que estará sujeito o peixe:
 - i. pela regra da cadeia.
 - ii. por derivação directa da composição $(T \circ \mathbf{c})(t)$.
- c. Considere que a temperatura num ponto (x, y, z) é dada por $T(x, y, z) = x^2 + y^2 + z^2$. Se uma partícula se move segundo a hélice circular parametrizada por $\mathbf{c}(t) = (\cos t, \sin t, t)$, determine:
 - i. T(t).
 - ii. T'(t) através da regra da cadeia.
 - iii. uma aproximação para a temperatura a que está sujeita a partícula no instante $t=\pi/2+0.001.$

Exercício 2.4.8

Seja $\mathbf{F}: \mathbb{R}^2 \to \mathbb{R}^2$, $(x,y) \mapsto (e^{x+y}, e^{x-y})$. Considere-se \mathbf{c} um caminho tal que $\mathbf{c}(0) = (0,0)$ e $\mathbf{c}'(0) = (1,1)$. Indique o vector tangente a $(\mathbf{F} \circ \mathbf{c})(t)$ no instante t = 0.

Exercício 2.4.9

Suponha que u = f(x, y) e v = g(x, y) satisfazem as equações de Cauchy-Riemann

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial u}; \ u_y = -v_x.$$

Se $x = r \cos \theta$ e $y = r \sin \theta$, mostre que

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}, \ \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}.$$

2.5 Gradiente e Derivada Direccional.

Exercício 2.5.1

Calcule o vector gradiente da função f no ponto P. Calcule ainda a derivada direccional de f em P na direcção do vector \mathbf{u} :

a.
$$f(x,y) = 9x^2 + 4y^2$$
, $P = (2, 3)$, $\mathbf{u} = \mathbf{i} + \mathbf{j}$.

b.
$$f(x, y, z) = yz^3 - 2x^2$$
, $P = (2, -3, 1)$; $\mathbf{u} = \frac{1}{2} \mathbf{i} + \sqrt{3} \mathbf{j}$.

c.
$$f(x, y, z) = xy^2e^z$$
, $P = (2, -1, 0)$; $\mathbf{u} = \mathbf{i} + \mathbf{j} - \mathbf{k}$.

d.
$$f(x,y) = x^3 - 2x^2y + xy^2 + 1$$
, $P = (1, 2)$; $\mathbf{u} = 3\mathbf{i} + 4\mathbf{j}$.

14 Derivação

Exercício 2.5.2

Para cada uma das alíneas do exercício anterior, determine um vector unitário com o sentido do maior crescimento da função f e determine a taxa de variação nesse sentido. Proceda de igual modo para o sentido de maior decrescimento.

Exercício 2.5.3

Determine a derivada direccional de f no ponto P e segundo a direcção indicada.

- a. $f(x,y) = \ln \sqrt{x^2 + y^2}$, P = (3, 5), na direcção da bissectriz dos quadrantes pares.
- b. f(x,y,z) = xy+yz+zx, P = (1, 1, 3), na direcção que vai do ponto P ao ponto Q = (5, 5, 15).
- c. $f(x,y) = \ln(e^x + e^y)$, P = (0, 0), na direcção que faz um ângulo de 30° (no sentido directo) com a horizontal.

Exercício 2.5.4

Mostre que a derivada da função $f(x,y)=y^2/x$, calculada num qualquer ponto da elipse de equação $2x^2+y^2=k\ (k>0)$, é igual a 0.

Exercício 2.5.5

Determine o ângulo entre os gradientes da função $f(x,y) = \ln(y/x)$ nos pontos P = (1/2, 1/4) e Q = (1, 1).

Exercício 2.5.6

Determine equações do plano tangente e da recta normal às seguintes superfícies em \mathbb{R}^3 , no ponto P dado:

a.
$$9x^2 - 4y^2 - 25z^2 = 40$$
, $P = (4, 1, -2)$;

b.
$$z = x^2 - y^2$$
, $P = (1, 1, 0)$;

c.
$$z = \ln(xy)$$
, $P = (1/2, 2, 0)$;

d.
$$xyz - 4xz^3 + y^3 = 10$$
, $P = (-1, 2, 1)$.

Exercício 2.5.7

Uma chapa de metal está situada num plano-xy, de modo que a temperatura T em (x,y) é inversamente proporcional à origem. A temperatura em P(3,4) é de 100°C.

- a. Encontre a taxa de variação de T em P na direcção $\mathbf{i} + \mathbf{j}$
- b. A partir de P, em que sentido aumenta mais rapidamente a temperatura? E em que sentido decresce mais rapidamente?
- c. Em que direcção a taxa de variação de T é 0?

2.6 Exercícios Variados

Exercício 2.6.1

Considere o movimento de uma partícula segundo a curva, no plano, parametrizada por

$$\mathbf{c}(t) = e^t \cos t \ \mathbf{i} + e^t \sin t \ \mathbf{j}, \ t \in \mathbb{R}.$$

Mostre que o vector tangente a \mathbf{c} em cada instante t, faz com $\mathbf{c}(t)$ um ângulo constante e igual a $\pi/4$.

Exercício 2.6.2

Dada uma função diferenciável f, de uma variável real, e $z(x,y) = f\left(\frac{x+y}{x-y}\right)$, mostre que

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial x} = 0$$

Exercício 2.6.3

Considere uma corda de um violino com um certo comprimento. Considere um ponto x, da corda quando esta está na horizontal. O deslocamento vertical, no instante t, do ponto x é dado por $u(x,y) = \sin(x-6t) + \sin(x+6t)$. Calcule a velocidade da corda em x=1 no instante t=1/3.

Exercício 2.6.4

No instante t = 0 é lançada uma partícula a partir do ponto P = (1, 1, 1) na superfície de equação $S: x^2 + 2y^2 + 3z^2 = 6$, segundo a direcção normal a S, e com a velocidade de $10 \ ms^{-1}$. Calcule o instante em que a partícula atinge a esfera de equação $x^2 + y^2 + z^2 = 103$.

Exercício 2.6.5

Suponha que um insecto se encontra num ambiente tóxico e que o nível de toxicidade é dado pela função $T(x,y)=2x^2-4y^2$, onde (x,y) é a posição do insecto segundo um referencial. Se o insecto estiver na posição (-1,2), em que sentido se deve movimentar de modo a que o nível de toxicidade diminua mais rapidamente?

Exercício 2.6.6

- a. Determine a taxa de variação instantânea de $f(x, y, z) = e^{xy} \sin(xyz)$, no ponto P = (0, 1, 1) e na direcção do vector $\mathbf{u} = \mathbf{i} 2\mathbf{j} + 2\mathbf{k}$.
- b. Seja $h(x,y) = 2e^{-x^2} + e^{-3y^2}$. Suponha-se que a altura de uma montanha, no ponto (x,y), é dada pela função h. A partir do ponto P = (1,0), determine a direcção na qual se deve seguir de modo a escalar o mais rapidamente possível.

16 Derivação

Exercício 2.6.7

O que está errado no seguinte raciocínio?

"Suponha-se que w = f(x, y) e $y = x^2$. Então, pela regra da cadeia, temos:

$$\frac{\partial w}{\partial x} = \frac{\partial w}{\partial x} \frac{\mathrm{d}x}{\mathrm{d}x} + \frac{\partial w}{\partial y} \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\partial w}{\partial x} + 2x \frac{\partial w}{\partial y}.$$

Assim,
$$2x \frac{\partial w}{\partial y} = 0$$
 e, portanto, $\frac{\partial w}{\partial y} = 0$."

Exercício 2.6.8

Usando a regra da cadeia determine uma fórmula para:

a.
$$\frac{\mathrm{d}}{\mathrm{d}t} \left(e^{f(t)g(t)} \right)$$

b.
$$\frac{\mathrm{d}}{\mathrm{d}t} \left(f(t)^{g(t)} \right)$$

Exercício 2.6.9

Verifique a regra da cadeia para $f \circ \mathbf{c}$.

a.
$$f(x,y,z) = \frac{\ln(1+x^2+2z^2)}{1+y^2}$$
, $\mathbf{c}(t) = (t, 1-t^2, \cos t)$

b.
$$f(x,y) = \frac{x^2}{2 + \cos y}$$
, $\mathbf{c}(t) = (e^t, e^{-t})$

Exercício 2.6.10

Suponha que f é uma função diferenciável de uma variável real. Seja u = g(x, y) definida por

$$u = g(x, y) = xy f\left(\frac{x+y}{xy}\right).$$

Mostre que a função u satisfaz a equação às derivadas parciais

$$x^{2} \frac{\partial u}{\partial x} - y^{2} \frac{\partial u}{\partial y} = G(x, y) u,$$

e determine a função G.

Exercício 2.6.11

Seja F uma função de uma variável real e seja f uma função de duas variáveis reais, ambas diferenciáveis. Mostre que

$$\nabla (F \circ f)(x,y) \parallel \nabla f(x,y), \forall (x,y)$$