Apêndice A

Formulario

Equações Diferenciais Ordinárias de 1ª Ordem

Equações Exactas. Factor Integrante.

Dada uma equação diferencial não exacta M(x, y) dx + N(x, y) dy = 0.

- 1. Se $R = \frac{1}{N} \left(\frac{\partial M}{\partial y} \frac{\partial N}{\partial x} \right)$ depende apenas da variável x então a função $v(x) = e^{\int R(x) dx}$ é factor integrante da equação diferencial dada.
- 2. Se $\tilde{R} = \frac{1}{M} \left(\frac{\partial N}{\partial x} \frac{\partial M}{\partial y} \right)$ depende apenas da variável y então a função $\tilde{v}(y) = e^{\int \tilde{R}(y) \, \mathrm{d}y}$ é factor integrante da equação diferencial dada.

Equações lineares. Redução à forma linear.

Dada uma equação linear de 1^a ordem y' + p(x)y = r(x), a solução geral é

$$y(x) = e^{-h} \int r(x)e^{h} dx + ce^{-h}$$
, onde $h = \int p(x) dx$.

Se a equação não é linear podemos, em alguns casos, reduzi-la à forma linear mediante uma mudança de variável conveniente. Por exemplo, a equação de Bernoulli, $y' + p(x)y = r(x)y^{\alpha}$, $\alpha \in \mathbb{R}$, reduz-se à forma linear usando a mudança de variável $u = y^{1-\alpha}$.

Teorema de Existência e Unicidade de Solução Para o PVI. O Método de Picard.

Considere-se o problema de valor inicial

$$y'(x) = f(x, y), y(x_0) = y_0,$$
 (*)

Teorema 1 (Existência e Unicidade)

Considere-se que as funções f(x,y), e $\frac{\partial f}{\partial y}(x,y)$ são contínuas no rectângulo (fechado) dado por

$$R: [x_0, x_0 + a], |y - y_0| \le b. (a, b > 0)$$

Calculem-se os valores

$$M = \max_{(x,y)\in R} |f(x,y)|$$
 e $\alpha = \min\left\{a, \frac{b}{M}\right\}$.

Nestas condições o problema de valor inicial (*) tem solução única no intervalo $[x_0, x_0 + \alpha]$.

O Método de Picard.

O processo iterativo de Picard para o PVI (*) é

$$y_0(x) = y_0$$

$$y_n(x) = y_0 + \int_{x_0}^x f[t, y_{n-1}(t)] dt, \quad n \ge 1.$$

Obseração. Nas condições do teorema 1 o esquema iterativo de Picard converge para a solução de (*) no intervalo $[x_0, x_0 + \alpha]$

Equações Diferenciais Ordinárias Lineares de ordem n>1

Caso n=2:
$$y'' + p(x)y' + q(x)y = r(x)$$

Equação homogénea de coeficientes constantes

É uma equação que pode ser escrita na forma: y'' + ay' + by = 0 (A) a, b são constantes. $Equação\ característica\ associada$: $\lambda^2 + a\lambda + b = 0$ (B). Soluções: λ_1, λ_2 .

	Tipo de raízes de (B)	Solução geral de (A)
Caso 1	reais distintas λ_1, λ_2	$y(x) = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x}, \ C_1, \ C_2 \in \mathbb{R}$
Caso 2	dupla $\lambda = -a/2$	$y(x) = (C_1 + C_2 x)e^{\lambda x}, \ C_1, \ C_2 \in \mathbb{R}$
Caso 3	complexas conj. $\lambda_1 = \overline{\lambda_2} = \alpha + i\beta$	$y(x) = e^{\alpha x} \left[C_1 \cos(\beta x) + C_2 \sin(\beta x) \right], \ C_1, C_2 \in \mathbb{R}$

Equação homogénea de coeficientes variáveis: equação de Euler-Cauchy

É uma equação que pode ser escrita na forma: $x^2y'' + axy' + by = 0$ (C) a, b são constantes. $Equação \ algébrica \ associada$: $m^2 + (a-1)m + b = 0$ (D). Soluções: m_1, m_2 .

	Tipo de raízes de (D)	Solução geral de (C)
Caso 1	reais distintas m_1, m_2	$y(x) = C_1 x^{m_1} + C_2 x^{m_2}, \ C_1, \ C_2 \in \mathbb{R}$
Caso 2	dupla m = (1 - a)/2	$y(x) = (C_1 + C_2 \ln x) x^m, \ C_1, \ C_2 \in \mathbb{R}$
Caso 3	complexas conj. $m_1 = \overline{m_2} = \alpha + i\beta$	$y(x) = x^{\alpha} \left[C_1 \cos \left(\beta \ln x \right) + C_2 \sin \left(\beta \ln x \right) \right],$
		$C_1,C_2\in\mathbb{R}$

Método da redução de ordem

Considere-se a equação y'' + p(x)y' + q(x)y = 0 e $y_1(x)$ uma solução da equação. Uma base para as soluções da equação é $\{y_1, y_2\}$ onde $y_2(x) = u(x)y_1(x)$, sendo

$$u(x) = \int \frac{1}{y_1^2} e^{-\int p(x) \, \mathrm{d}x} \, \mathrm{d}x$$

Equação não homogénea

- Equação não homogénea: y'' + p(x)y' + q(x)y = r(x) (NH)
- Equação homogénea associada: y'' + p(x)y' + q(x)y = 0 (H)

Formulário Apêndice A

A solução geral de (NH) pode ser escrita na forma: $y(x) = y_h(x) + y_p(x)$, onde y_h é a solução geral de (H) e y_p uma solução particular de (NH).

MÉTODO DA VARIAÇÃO DOS PARÂMETROS.

Seja $\{y_1, y_2\}$ uma base para as soluções de (H) e $W(y_1, y_2)$ o wronskiano de y_1, y_2 . Então

$$y_p(x) = -y_1(x) \int \frac{y_2(x)r(x)}{W(y_1, y_2)} dx + y_2(x) \int \frac{y_1(x)r(x)}{W(y_1, y_2)} dx$$

Caso particular: MÉTODO DOS COEFICIENTES INDETERMINADOS.

Aplica-se a equações do tipo: y'' + ay' + by = r(x) a, b constantes.

Regra básica:

r(x)	escolha para y_p
$ke^{\alpha x}$	$Ce^{\alpha x}$
$kx^n \ (n \in \mathbb{N})$	$k_n x^n + k_{n-1} x^{n-1} + \dots + k_1 x + k_0$
$k\cos\left(\beta x\right)$	$k_1 \cos(\beta x) + k_2 \sin(\beta x)$
$k\sin\left(\beta x\right)$	$k_1 \cos(\beta x) + k_2 \sin(\beta x)$
$ke^{\alpha x}\cos\left(\beta x\right)$	$e^{\alpha x} \left[k_1 \cos \left(\beta x \right) + k_2 \sin \left(\beta x \right) \right]$
$ke^{\alpha x}\sin\left(\beta x\right)$	$e^{\alpha x} \left[k_1 \cos(\beta x) + k_2 \sin(\beta x) \right]$

Regra da Modificação: Se na escolha de y_p , dada pela tabela anterior, temos uma solução da equação homogénea associada, multiplique-se por x (ou por x^2 se essa solução corresponde a uma raíz dupla da equação característica).

Observação: A regra básica admite a seguinte generalização:

Regra básica:(generalização)

$$\frac{r(x)}{e^{\alpha x}P_n(x)\cos(\beta x)} \frac{e^{\alpha x}\left(\left[a_nx^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0\right]\cos(\beta x) + \left[b_nx^n + b_{n-1}x^{n-1} + \dots + b_1x + b_0\right]\sin(\beta x)\right)}{e^{\alpha x}P_n(x)\sin(\beta x)} idem$$

Nota: o parâmetro s corresponde ao número de vezes que $\alpha + i\beta$ é raíz do polinómio característico.

Equações diferenciais lineares de ordem n > 2 (coef. const.):

$$y^{(n)}+a_{n-1}y^{(n-1)}+\cdots+a_1y'+a_0y=r(x)$$
 (NH)
Solução Geral: $y(x)=y_h(x)+y_p(x)$
Equação Homogénea Associada: $y^{(n)}+a_{n-1}y^{(n-1)}+\cdots+a_1y'+a_0y=0$ (H)
Equação Característica associada: $\lambda^n+a_{n-1}\lambda^{n-1}+\cdots+a_1\lambda+a_0=0$ (I)

Tipo de raízes de (I)

Solução geral de (H)

Caso 1
$$n$$
 raízes reais distintas $\lambda_1, \ldots, \lambda_n$ $y(x) = \sum_{k=1}^n c_k e^{\lambda_k x}, \ c_1, \ldots, c_n \in \mathbb{R}$

Caso 2
$$p$$
 raízes iguais $\lambda_1 = \dots = \lambda_p = \mu$ $y(x) = (c_1 + \dots + c_p x^{p-1})e^{\mu x}$ $(n-p)$ raízes reais distintas $\lambda_{p+1}, \dots, \lambda_n$ $+ \sum_{k=p+1}^n c_k e^{\lambda_k x}, \ c_1, \dots, c_n \in \mathbb{R}$

Caso 3 complexas conj.
$$\lambda_1 = \overline{\lambda_2} = \alpha + i\beta$$
 $y(x) = e^{\alpha x} \left[C_1 \cos(\beta x) + C_2 \sin(\beta x) \right] + \sum_{k=3}^{n} c_k e^{\lambda_k x}, \ c_1, \dots, c_n \in \mathbb{R}$

Equação diferencial linear de ordem n > 2 não homogénea:

$$y^{(n)} + p_{n-1}(x)y^{(n-1)} + \dots + p_1(x)y' + p_0(x)y = r(x)$$

Variação dos Parâmetros:

$$y_p(x) = \sum_{k=1}^n y_k(x) \int \frac{W_k r(x)}{W} dx,$$

onde:

- $\triangleright W$ wronskiano de $y_1(x), \ldots, y_n(x)$;
- $\triangleright W_k$ determinante que resulta do wronskiano de $y_1(x), \ldots, y_n(x)$ substituindo a coluna k pelo vector $(n \times 1)$, $[0 \cdots 0 \ 1]^T$.

Formulário Apêndice A

Sistemas de Equações Diferenciais Ordinárias Lineares

São sistemas de equações diferenciais lineares que podem ser escritos na forma: $\mathbf{y}' = \mathbf{A}(t)\mathbf{y} + \mathbf{g}(t)$, onde $\mathbf{A}(t)$ é uma matriz $n \times n$ e $\mathbf{y}(t)$, $\mathbf{g}(t)$ são vectores $n \times 1$. A solução geral do sistema pode ser escrita na forma $\mathbf{y}(t) = \mathbf{y}^{(h)}(t) + \mathbf{y}^{(p)}(t)$ sendo $\mathbf{y}^{(h)}(t)$ a solução geral do sistema homogéneo associado e $\mathbf{y}^{(p)}(t)$ uma solução particular do sistema não homogéneo.

Sistema Homogéneo de coeficientes constantes: y' = Ay (H)

Dado $\lambda \in \mathbb{R}$ tal que existe um vector não nulo \mathbf{x} para o qual se verifica $A\mathbf{x} = \lambda \mathbf{x}$ então o vector $\mathbf{y}(t) = \mathbf{x}e^{\lambda t}$, é solução do sistema homogéneo (H).

Caso (I): A matriz A possui n vectores próprios $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(n)}$ linearmente independentes.

Sejam $\mathbf{x}^{(1)},\dots,\mathbf{x}^{(n)}$ vectores próprios da matriz A associados aos valores próprios $\lambda_1,\dots,\lambda_n$ respectivamente. Note-se que os valores próprios podem ser iguais. Então uma base para as soluções de (H) será dada pelos vectores $\mathbf{y}^{(i)}(t) = \mathbf{x}^{(i)}e^{\lambda_i t}$ $i=1\dots n$. A solução geral do sistema (H) é $\mathbf{y}(t) = C_1\mathbf{x}^{(1)}e^{\lambda_1 t} + \dots + C_n\mathbf{x}^{(n)}e^{\lambda_n t}$.

Caso (II): A matriz A não possui n vectores próprios $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(n)}$ linearmente independentes.

(II)-1: $\lambda = \mu$ é raíz dupla da equação $\det(A - \lambda I) = 0$ a que corresponde apenas a um vector próprio \mathbf{x} .

- Uma solução para o sistema (H) será $\mathbf{y}^{(1)}(t) = \mathbf{x}e^{\mu t}$.
- Uma segunda solução será $\mathbf{y}^{(2)} = \mathbf{x} t e^{\mu t} + \mathbf{u} e^{\mu t}$, onde \mathbf{u} é um vector que satisfaz $(\mathbf{A} \mu \mathbf{I})\mathbf{u} = \mathbf{x}$.
- Temos que $\mathbf{y}^{(1)}$, $\mathbf{y}^{(2)}$ são linearmente independentes.

(II)-2: $\lambda=\mu$ é raíz tripla da equação $\det{(A-\lambda I)}=0$ a que corresponde apenas a um vector próprio ${\bf x}$.

- Uma solução para o sistema (H) será $\mathbf{y}^{(1)}(t) = \mathbf{x}e^{\mu t}$.
- Uma segunda solução será $\mathbf{y}^{(2)} = \mathbf{x} t e^{\mu t} + \mathbf{u} e^{\mu t}$, onde \mathbf{u} satisfaz $(\mathbf{A} \mu \mathbf{I})\mathbf{u} = \mathbf{x}$.
- Uma terceira solução será $\mathbf{y}^{(3)} = \mathbf{x} \frac{t^2}{2} e^{\mu t} + \mathbf{u} t e^{\mu t} + \mathbf{v} e^{\mu t}$, sendo \mathbf{v} um vector solução de $(\mathbf{A} \mu \mathbf{I})\mathbf{v} = \mathbf{u}$
- \bullet Temos que $\mathbf{y}^{(1)},\,\mathbf{y}^{(2)},\,\mathbf{y}^{(3)}$ são linearmente independentes.

(II)-3: $\lambda = \mu$ é raíz tripla da equação $\det(A - \lambda I) = 0$ a que correspondem dois vectores próprios $\mathbf{x}^{(1)}$, $\mathbf{x}^{(2)}$.

- Duas soluções l.i. do sistema (H): $\mathbf{y}^{(1)}(t) = \mathbf{x}^{(1)}e^{\mu t}$, $\mathbf{y}^{(2)}(t) = \mathbf{x}^{(2)}e^{\mu t}$.
- Terceira solução: $\mathbf{y}^{(3)} = \mathbf{x}te^{\mu t} + \mathbf{u}e^{\mu t}$, onde \mathbf{x} é uma combinação linear de $\mathbf{x}^{(1)}$ e $\mathbf{x}^{(2)}$ tal que o sistema $(\mathbf{A} \mu \mathbf{I})\mathbf{u} = \mathbf{x}$ seja possível.
- $\bullet\,$ Temos que $\mathbf{y}^{(1)},\,\mathbf{y}^{(2)},\,\mathbf{y}^{(3)}$ são linearmente independentes.

Caso Complexo

No caso de a matriz, A, do sistema possuir um vector próprio complexo, $\mathbf{x} = \mathbf{v}^{(1)} + i\mathbf{v}^{(2)}$, associado a um valor próprio complexo $\lambda = a + ib$, então o vector $\mathbf{y}(t) = e^{\lambda t}\mathbf{x}$ é, como vimos, uma solução (complexa) de (H). A proposição seguinte indica-nos como podemos construir dois vectores, de componentes reais, que são soluções linearmente independentes de (H).

Proposição 1 Considere-se o sistema de equações diferenciais $\mathbf{y}' = A\mathbf{y}$ (H). Suponha-se que $\mathbf{y}(t) = \mathbf{y}^{(1)}(t) + i\mathbf{y}^{(2)}(t)$ é uma solução complexa de (H). Então $\mathbf{y}^{(1)}(t)$ e $\mathbf{y}^{(2)}(t)$ são soluções (reais) de (H). Mais ainda, $\mathbf{y}^{(1)}(t)$ e $\mathbf{y}^{(2)}(t)$ são vectores linearmente independentes.

Sistema Não Homogéneo: y' = A(t)y + g(t) (NH)

Método da variação dos parâmetros

Para determinar a solução particular $\mathbf{y}^{(p)}$ do sistema (NH), considere-se $\mathbf{Y}(t)$ uma matriz fundamental para o sistema homogéneo associado a (NH), isto é $\mathbf{Y}(t)$ é uma matriz $n \times n$ cujas colunas são n vectores linearmente independentes que são solução do sistema homogéneo. A solução particular é dada por,

$$\mathbf{y}^{(p)}(t) = \mathbf{Y}(t)\mathbf{u}(t), \text{ onde } \mathbf{u}(t) = \int \mathbf{Y}^{-1}(t)\mathbf{g}(t) dt.$$

Método da Diagonalização

Aplica-se a sistemas do tipo $\mathbf{y}' = A\mathbf{y} + \mathbf{g}(t)$, onde A é uma matriz $n \times n$ constante que possui base de vectores próprios $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}$ associados, respectivamente, aos valores próprios $\lambda_1, \dots, \lambda_n$.

Considere-se a matriz cujas colunas são os vectores próprios de A, $\mathbf{X} = \begin{bmatrix} \mathbf{x}^{(1)} \mathbf{x}^{(2)} \dots \mathbf{x}^{(n)} \end{bmatrix}$. A matriz $\mathbf{D} = \mathbf{X}^{-1} \mathbf{A} \mathbf{X}$ é uma matriz diagonal cujos elementos da diagonal principal são os valores próprios de A, $a_{ii} = \lambda_i$, $i = 1, \dots, n$.

Usando a mudança de variável $\mathbf{z} = \mathbf{X}^{-1}\mathbf{y}$ transforma-se o sistema $\mathbf{y}' = A\mathbf{y} + \mathbf{g}(t)$ no sistema

$$\mathbf{z}' = \mathbf{D}\mathbf{z} + \mathbf{h}(t),$$

onde $\mathbf{h}(t) = \mathbf{X}^{-1}\mathbf{g}(t)$. Obtém-se assim um sistema composto por n equações diferenciais lineares de 1^a ordem dado, em coordenadas, por

$$z_i' - \lambda_i z_i = h_i(t), \quad i = 1, \dots, n.$$

Após a resolução de cada uma destas equações lineares retorna-se à variável inicial \mathbf{y} . A solução geral do sistema é o vector $\mathbf{y}(t) = \mathbf{X}\mathbf{z}(t)$

Formulário Apêndice A

Transformada de Laplace

No que se segue considera-se $F(s) \stackrel{\text{not.}}{=} \mathcal{L}\{f(t)\} \stackrel{\text{def.}}{=} \int_{0}^{+\infty} e^{-st} f(t) dt$.

Propriedades da Transformada de Laplace

1.
$$\mathcal{L}\left\{\alpha f(t) + \beta g(t)\right\} = \alpha \mathcal{L}\left\{f(t)\right\} + \beta \mathcal{L}\left\{g(t)\right\}$$
 (linearidade)

2.
$$\mathcal{L}\{f'(t)\} = sF(s) - f(0)$$

3.
$$\mathscr{L}\{f''(t)\}=s^2F(s)-sf(0)-f'(0)$$

4.
$$\mathscr{L}\left\{f^{(n)}(t)\right\} = s^n F(s) - s^{n-1} f(0) - s^{n-2} f'(0) - \dots - s^2 f^{(n-3)}(0) - s f^{(n-2)}(0) - f^{(n-1)}(0)$$

5.
$$\mathscr{L}\left\{t\,f(t)\right\} = -\frac{\mathrm{d}}{\mathrm{d}s}F(s)$$

6.
$$\mathscr{L}\left\{e^{at} f(t)\right\} = F(s-a)$$
 (1º teorema do deslocamento)

7.
$$\mathcal{L}\left\{H_c(t) f(t-c)\right\} = e^{-sc} F(s)$$
 (2º teorema do deslocamento)

8.
$$\mathscr{L}\left\{(f*g)(t)\right\} = \mathscr{L}\left\{f(t)\right\} \times \mathscr{L}\left\{g(t)\right\}$$
 onde $f*g = \int_0^t f(t-u)g(u) du$.

Propriedades Adicionais da Transformada de Laplace

1.
$$\mathscr{L}\left\{\int_0^t f(\tau) d\tau\right\} = \frac{1}{s} F(s)$$

2.
$$\mathscr{L}\left\{\frac{f(t)}{t}\right\} = \int_{s}^{+\infty} F(\tilde{s}) \,\mathrm{d}\tilde{s}.$$

Tabela de Transformadas

	f(t)	F(s)		f(t)	F(s)
1	1	$\frac{1}{s} \ (s > 0)$	6	$\cosh\left(at\right)$	$\frac{s}{s^2 - a^2} \ (s > a)$
2	t^n	$\frac{n!}{s^{n+1}} \ (s > 0)$	7	$\sinh\left(at\right)$	$\frac{a}{s^2 - a^2} (s > a)$ $\frac{e^{-cs}}{s} (s > 0)$
3	e^{at}	$\frac{1}{s-a} \ (s>a)$	8		
4	$\cos\left(at\right)$	$\frac{s}{s^2 + a^2} \ (s > 0)$	9	$\delta(t-c)$	$e^{-cs} \ (s > 0)$
5	$\sin\left(at\right)$	$\frac{a}{s^2 + a^2} \ (s > 0)$			

Convolução

Dadas duas funções, $f \in g$, a convolução de f com $g \notin f * g = \int_0^t f(t-u)g(u) du$.

Introdução Aos Métodos Numéricos Para EDO's

Considere-se o PVI:

$$y' = f(x, y), \quad y(t_0) = y_0.$$
 (*)

Suponha-se que o problema de valor inicial tem solução única, y(t), no intervalo, $I = [t_0, t_0 + \alpha]$ para algum $\alpha > 0$. Mais ainda, suponha-se que, para todo $t \in I$, $|y(t)| \le b$, para algum b > 0. Podemos aproximar a solução do PVI (*), no intervalo I, usando o método de Euler.

Método de Euler

Considere-se o rectângulo, R, definido por:

$$R: \quad t_0 \le x \le t_0 + \alpha, \quad |y| \le b$$

Dado um número natural N, divida-se o intervalo $I=[t_0,\,t_0+\alpha]$ em N sub-intervalos de igual amplitude, $h=\alpha/N$, e de extremos $t_0,t_1,\ldots,\,t_N=t_0+\alpha$. Note-se que $t_k=t_0+kh,\,k=0,\ldots,N$. O método de Euler gera uma sequência, Processo Iterativo do método de Euler:

$$y_0 = y(t_0)$$

$$y_{k+1} = y_k + h f(t_k, y_k), \quad k = 0, \dots N - 1$$

Estimativa Para o Erro de Aproximação de $y(t_N)$:

$$|y(t_N) - y_N| \le \frac{Dh}{2L} \left[e^{\alpha L} - 1 \right],$$

onde D e L são constantes positivas tais que

$$\max_{(x,y)\in R} \left| \frac{\partial f}{\partial y}(t,y) \right| \leq L; \qquad \max_{(x,y)\in R} \left| \frac{\partial f}{\partial t}(t,y) + f(t,y) \frac{\partial f}{\partial y}(t,y) \right| \leq D$$

Observação: Por forma a garantir a existência dos máximos nas desigualdades anteriores, admitese sempre que para o problema (*) a função f é contínua e tem derivadas parciais contínuas no rectângulo (fechado) R.