Ficha Prática nº 3

Limites de funções reais de variável real.

1. Considere a função f definida por $f(x) = \frac{1}{\frac{\pi}{4} - arctg|x|}$. Sabendo que $a = \lim_{x \to 1^+} f(x)$ e

 $b = \lim_{x \to -1^+} f(x)$, qual das afirmações seguintes é verdadeira:

a)
$$a = -\infty$$
 e $b = +\infty$

b)
$$a = +\infty$$
 e $b = -\infty$

c)
$$a = +\infty$$
 e $b = +\infty$

d)
$$a = -\infty$$
 e $b = \frac{2}{\pi}$

2. Seja $f: IR \to IR$ a função definida por $f(x) = \begin{cases} \frac{1}{e^x} & se & x < 0 \\ e^x - 1 & se & x \ge 0 \end{cases}$. Qual das afirmações

seguintes é verdadeira:

a)
$$\lim_{x \to 0^{-}} f(x) \neq \lim_{x \to 0^{+}} f(x)$$

b)
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x)$$

c) não existe
$$\lim_{x\to 0^-} f(x)$$

d) não existe
$$\lim_{x\to 0^+} f(x)$$

3. Seja $f: IR \to IR$ a função definida por $f(x) = xe^{1-|x|}$. Sabendo que $a = \lim_{x \to +\infty} f(x)$ e $b = \lim_{x \to -\infty} f(x)$, qual das afirmações seguintes é verdadeira:

a)
$$a = +\infty$$
 e $b = -\infty$

b)
$$a = +\infty$$
 e $b = +\infty$

c)
$$a = 0$$
 e $b = 0$

d)
$$a = +\infty \ e \ b = 0$$

4. Seja $f(x) = \begin{cases} x-2, & x \le 3 \\ 3x-7, & x > 3 \end{cases}$. Calcule:

$$\mathbf{a)} \quad \lim_{x \to 3^{-}} f(x)$$

$$\mathbf{b)} \quad \lim_{x \to 3^+} f(x)$$

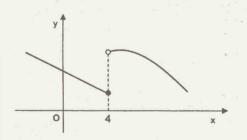
$$\mathbf{c)} \lim_{x \to 3} f(x)$$

d)
$$\lim_{x \to 5^{-}} f(x)$$

e)
$$\lim_{x\to 5^+} f(x)$$

$$\mathbf{f)} \ \lim_{x \to 5} f(x)$$

5. Na figura está representada parte do gráfico de uma função f, de domínio IR.



Qual das seguintes afirmações é verdadeira?

$$\mathbf{a)} \qquad \lim f(x) = f(4)$$

e
$$\lim_{x \to a} f(x) = f(4)$$

$$\mathbf{b)} \qquad \lim f(x) = f(4)$$

$$\lim_{x \to a} f(x) \neq f(4)$$

c)
$$\lim f(x) \neq f(4)$$

e
$$\lim_{x \to \infty} f(x) = f(4)$$

$$\mathbf{d)} \qquad \lim f(x) \neq f(4)$$

$$\lim_{x \to 4^{-}} f(x) = f(4) \qquad e \qquad \lim_{x \to 4^{+}} f(x) = f(4)$$

$$\lim_{x \to 4^{-}} f(x) = f(4) \qquad e \qquad \lim_{x \to 4^{+}} f(x) \neq f(4)$$

$$\lim_{x \to 4^{-}} f(x) \neq f(4) \qquad e \qquad \lim_{x \to 4^{+}} f(x) = f(4)$$

$$\lim_{x \to 4^{-}} f(x) \neq f(4) \qquad e \qquad \lim_{x \to 4^{+}} f(x) \neq f(4)$$

6. Calcule os seguintes limites:

a)
$$\lim_{t \to -2} \frac{t^3 + 4t^2 + 4t}{(t+2)(t-3)}$$
 b) $\lim_{x \to 2} \frac{\log(x-1)}{x^2 - 6}$

b)
$$\lim_{x\to 2} \frac{\log(x-1)}{x^2-6}$$

c)
$$\lim_{x \to +\infty} \frac{2x^5 - 3x^3 + 2}{7 - x^2}$$

$$\mathbf{d)} \quad \lim_{x \to -\infty} \frac{3 - x}{\sqrt{5 + 4x^2}}$$

d)
$$\lim_{x \to -\infty} \frac{3-x}{\sqrt{5+4x^2}}$$
 e) $\lim_{x \to 1} \left(\frac{1}{x-1} + \frac{3}{1-x^3} \right)$

$$\mathbf{f)} \quad \lim_{x \to 0^+} e^{\frac{1}{x}}$$

g)
$$\lim_{x \to 1^{+}} \log(x-1)$$

g)
$$\lim_{x \to 1^+} \log(x-1)$$
 h) $\lim_{x \to 0} \frac{x^2 - 2x}{3x^3 + x^2 + x}$ **i)** $\lim_{x \to 4} \frac{2x^2 - 7x - 4}{x^3 + x^2 - 80}$

i)
$$\lim_{x\to 4} \frac{2x^2 - 7x - 4}{x^3 + x^2 - 80}$$

j)
$$\lim_{x \to -1} \frac{2x+2}{\sqrt[4]{x+17}-2}$$
 k) $\lim_{x \to +\infty} \frac{x^2+3x}{2x^2}$

$$\mathbf{k}) \quad \lim_{x \to +\infty} \frac{x^2 + 3x}{2x^2}$$

$$\mathbf{l)} \quad \lim_{x \to +\infty} \log(2x - 5)$$

$$\mathbf{m)} \lim_{x \to \frac{\pi^+}{2}} \frac{sen(x)}{tg(x)}$$

$$\mathbf{n)} \quad \lim_{x \to +\infty} e^{\frac{1}{x-5}}$$

o)
$$\lim_{x \to -\infty} e^{\frac{x^3 - 1}{x^2 + 2}}$$

7. Usando o Teorema do Encaixe de Limites, calcule os seguintes

$$\mathbf{a)} \quad \lim_{x \to 0} x.sen\left(\frac{1}{x}\right)$$

b)
$$\lim_{x \to +\infty} \frac{\cos(x)}{x}$$

8. Mostre que os seguintes limites não existem:

a)
$$\lim_{x \to 0} x + \frac{x}{|x|}$$

b)
$$\lim_{x \to 0} e^{-\frac{1}{x}}$$

$$\mathbf{c}) \lim_{x \to -\infty} sen(x)$$