Escola Superior de Tecnologia e de Gestão INSTITUTO POLITÉCNICO DE BRAGANÇA

ANÁLISE MATEMÁTICA I

Exame Especial para Trabalhadores: 10/09/2003

Cursos: CA, IG.

Numero:	Nome:
Curso:	
&∕ Observações:	 Desligue o telemóvel. A prova é constituída por quatro grupos e tem a duração de 2h 30min. A cotação da prova é de 20 valores estando a cotação de cada questão indicada entre parêntesis ao lado da identificação, respectiva. Deve responder ao Grupo I na folha de prova e aos restantes grupos numa folha de exame. Deve justificar convenientemente todas as suas respostas com excepção das do grupo I. O uso de calculadoras é proibido.
<u>Grupo I</u>	

Deve responder às questões deste grupo sem apresentar quaisquer cálculos ou justificações

Atenção: Para cada uma das seguintes questões são indicadas quatro respostas alternativas, das quais apenas uma está correcta; assinale-a com um círculo à volta do número correspondente. Cada resposta correcta vale 0,75 valores; por cada 3 respostas erradas é descontado uma resposta correcta.

1. Seja $f(x) = 3\log_7(x)$, x > 0 e $a, b \in IR^+$, então podemos afirmar que:

(i)
$$f(a+b)=f(a)+f(b)$$

(iii)
$$f(a \times b) = f(a) + f(b)$$

(ii)
$$f(a+b)=f(a)\times f(b)$$

(iv)
$$f(a \times b) = f(a) \times f(b)$$

2. Quais das seguintes afirmações:

a) Se
$$f'=g'$$
 então $f=g$;

b) Se f é contínua então existe f';

c) Se $f \not\in$ derivável então $f \not\in$ contínua;

são verdadeiras?

- (i) apenas a c).
- (ii) apenas a a) e b).
- (iii) apenas a b) e c).
- (iv) todas.

3. Seja f uma função de domínio IR, e seja g a função definida por g(x) = f(x+1).

A recta de equação y = 2x + 4 é a única assímptota do gráfico de f.

Qual das seguintes é a única assímptota do gráfico de g?

(i) y = 2x - 4

(iii) y = 2x - 6

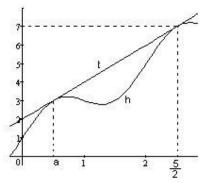
(ii) y = 2x + 6

- (iv) y = 2x + 4
- **4.** De uma função f , de domínio $\left[-4,5\right]$ e contínua em todo o seu domínio, sabe-se que:
 - a) f(-4) = 6; f(2) = -1;
- f(5) = 1;
- **b**) f é estritamente decrescente no intervalo [-4,2];
- c) f é estritamente crescente no intervalo [2,5].

Quantas soluções tem a equação f(x) = 0?

(i) três

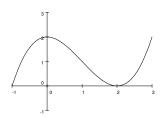
(iii) uma

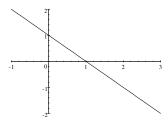

(ii) duas

- (iv) nenhuma
- 5. A figura ao lado representa parte do gráfico de uma função h e de uma recta t, tangente ao gráfico de h no ponto de abcissa x = a.

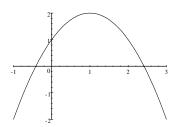
A recta t passa nos pontos de coordenadas (0,2) e $\left(\frac{5}{2},7\right)$.

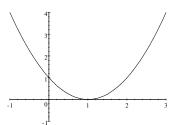
Indique o valor de h'(a).


- (i)
- (iii)
- (iv) não é possível determinar sem conhecer a expressão que define a função h.


- **6.** Seja $g(x) = \ln(3 x^2)$. Das quatro afirmações seguintes indique a correcta.
 - (i) $D_g = -3.3$ [.
 - (ii) O gráfico de g admite 2 assímptotas não verticais.
 - (iii) g tem um máximo relativo em x = 0.
 - (iv) g tem um mínimo relativo em x = 0.

7. Seja g uma função cujo gráfico tem um ponto de inflexão de abcissa x = 1. Indique qual dos seguintes gráficos pode representar a **segunda derivada** de g, g''.


(i)


(ii)

(iii)

(iv)

8. Uma primitiva da função $f(x) = \frac{e^x}{e^{2x} + 1}$ é

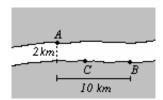
(i)
$$\frac{1}{2}ln|e^{2x}+1|$$

(iii)
$$arctg(e^x)$$

(ii)
$$2 \ln |e^{2x} + 1|$$

$$(iv) \frac{1}{e^x + 1}$$

Grupo II


- 9. Considere a função $f(x) = \begin{cases} \frac{e^x}{x^2 1}, & x \neq 1 \\ 0, & x = 1 \end{cases}$
 - (i) (0.5 val.) Determine o domínio de f.
 - (ii) (1 val.) Mostre que as rectas x = 1; x = -1 e y = 0 são assímptotas ao gráfico de f.
 - (iii) (1 val.) Estude f quanto à continuidade (em todos os pontos do seu domínio).
 - (iv) (0.5 val.) Justifique a não existência de f'(1).
 - (v) (0,5 val.) Mostre que a primeira derivada, f', é $f'(x) = \frac{e^x(x^2 2x 1)}{(x^2 1)^2}$.
 - (vi) (1 $\mathit{val.}$) Determine os extremos relativos e os intervalos de monotonia de $\,f\,$.
 - (vii)(0.5 val.) Determine a equação da recta tangente ao gráfico de f no ponto x = 0.

Grupo III

10. (2 val.) Formule matematicamente o seguinte problema, identificando:

- as variáveis,
- a função a optimizar,
- e explique como obter a localização do ponto C, sem resolver integralmente o problema.

"De acordo com a figura seguinte,

pretende-se construir um gasoduto de um local A para um local B que se encontram em margens opostas de um rio.

O gasoduto irá passar por baixo do rio, ligando o ponto A (numa margem) ao ponto C (na margem oposta), e seguirá pela margem do rio ligando C a B, tal como é ilustrado na figura.

Se o custo da construção do gasoduto é 5 vezes mais caro quando passa por baixo do rio, determine a localização do ponto C de modo a minimizar os custos de construção do canal."

Grupo IV

11. Calcule as seguintes primitivas:

(i)
$$(1.5 \text{ val.}) \int \left(1 + \frac{1}{x}\right)^2 dx$$
.

(iii) (1,5 val.)
$$\int \frac{e^{-2x} - x}{\sqrt{x^2 + e^{-2x}}} dx$$

(ii)
$$(2 \text{ val.}) \int x^2 \ln(x) dx$$
.

(iv) (2 val.)
$$\int \frac{x^2 + 4x + 1}{x^3 + 2x^2 + x} dx$$
.

Bom trabalho ...