

Escola Superior de Tecnologia e de Gestão Instituto Politécnico de Bragança

ANÁLISE MATEMÁTICA I

Exame 2^a Chamada: 07/02/2003

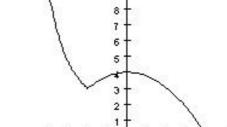
Cursos: Informática de Gestão Gestão e Engenharia Industrial

Nome:	
Número:	Curso: IG : GEI :
€€ Observações:	 Desligue o telemóvel. A prova é constituída por quatro grupos e tem a duração de 2h 30min. A cotação da prova é de 20 valores estando a cotação de cada questão indicada entre parêntesis ao lado da identificação, respectiva. Deve responder ao Grupo I na folha de prova e cada um dos Grupos II, III e IV em folhas de exame separadas. Com excepção das questões do Grupo I, deve justificar convenientemente todas as suas respostas. O uso de calculadoras é proibido.

Grupo I

Deve responder às questões deste grupo sem apresentar quaisquer cálculos ou justificações

Atenção: Para cada uma das seguintes questões são indicadas quatro respostas alternativas, das quais **apenas uma** está correcta; assinale-a com um círculo à volta do número correspondente. Cada resposta correcta vale 0,75 valores; por cada 3 respostas erradas é descontado uma resposta correcta.


1. Qual é a inversa e o domínio da função f definida por f(x) = arcsen(x-1) - 4?

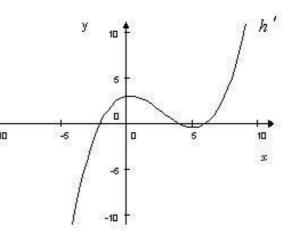
(i)
$$f^{-1}(x) = arcsen(x+4) - 1$$
 (ii) $f^{-1}(x) = sen(x+4) + 1$ $D_f = [0,2]$ $D_f = [0,2[$

(iii)
$$f^{-1}(x) = sen(x+1) + 4$$

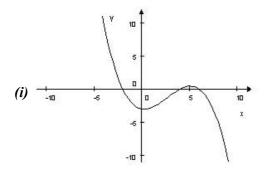
$$D_f =]1,4[$$
 (iv)
$$D_f = [0,2]$$

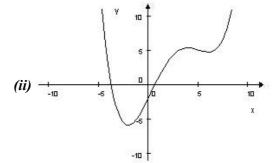
- 2. O limite $\lim_{x \to +\infty} \cos^2(x)$
 - (i) vale 1. (ii) vale $+\infty$. (iii) vale 0. (iv) não existe.

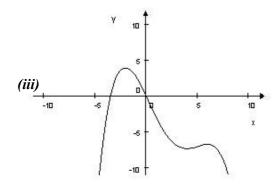
3. Na figura ao lado está parte da representação gráfica de uma função f de domínio IR. Podemos afirmar que:

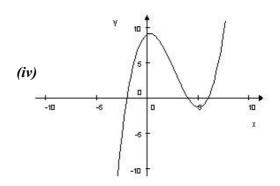

(i)
$$\forall x \in [1,3], f''(x) \times f'(x) > 0$$
.

(ii) $f''(x) = -\frac{1}{2}$ tem pelo menos uma solução no intervalo -4, -2[.


(iii)
$$\forall x \in [1,3], f''(x) \times f'(x) < 0$$
.


(iv)
$$f'(4) = 0$$


4. Na figura ao lado está parte da representação gráfica da função <u>primeira</u> <u>derivada</u>, *h'*, de uma função *h* de domínio *IR*.



Qual das figuras seguintes poderia ser parte da representação gráfica da função *h* ?

5. A tangente ao gráfico da função f definida por $f(x) = e^{2x-1}$ no ponto de abcissa 1 é

(i) y = ex.

(ii) y = 2e(x-1). (iii) y = e(2x-1). (iv) y = 2x-1.

6. Seja f uma função contínua de domínio IR acerca da qual se sabe que f(1) = -5 f(9) > 0. Qual das seguintes afirmações é verdadeira?

(i) g(x) = f(x) - 3 tem pelo menos um zero em [1,9].

- (ii) g(x) = f(x) + 3 tem pelo menos um zero em [1,9].
- (iii) g(x) = f(x) + 10 tem pelo menos um zero em [1,9].
- (iv) g(x) = f(x) 6 tem pelo menos um zero em [1,9].
- 7. Seja f uma função, com domínio IR, tal que f(x) = f(1-x) para todo número real x. Se f for derivável, então, f'(0) =

(i) f(0).

(ii) -f(0). (iii) f'(1).

(iv) - f'(1).

8. A mudança de variável $u = tg(x^2)$ transforma o integral $\int x \frac{sen(x^2)}{\cos^3(x^2)} dx$ no integral

(i) $\int \frac{u}{2} du$.

(ii) $2\int tg(u) du$. (iii) $\int \frac{u \operatorname{arctg}(u)}{2} du$. (iv) $\int \frac{\operatorname{arctg}(u)}{2} du$

Grupo II

- **9.** Considere a função $f(x) = \frac{x^2 + 1}{x^2}$.
 - **9.1.** (0.25 val.) Determine o domínio de f.
 - **9.2.** (0.75 val.) Mostre que a primeira derivada, f', e a segunda derivada, f'', são, $f'(x) = \frac{\left(-x^2 + 2x - 1\right)}{x}$ e $f''(x) = \frac{\left(x^2 - 4x + 3\right)}{x}$. respectivamente:
 - **9.3.** (0,75 val.) Indique os pontos críticos, os extremos relativos e os intervalos de monotonia.
 - **9.4.** (0,75 val.) Indique os pontos de inflexão e os intervalos de concavidade.

Grupo III

10. Considere a função real de variável real, g, de domínio IR, definida por $g(x) = \begin{cases} \frac{sen(x)}{x} - 1, & x < 0 \\ x^2, & 0 \le x \le 2 \\ \ln\left(2\sqrt{e^{-x}}\right), & x > 2 \end{cases}$

10.1. (0,75 val.) Mostre que
$$\ln\left(2\sqrt{e^{-x}}\right) = \ln(2) - \frac{x}{2}$$
.

- **10.2.** (1,5 val.) Analise a continuidade da função g em x = 0 e em x = 2. (**Obs.**: pode usar a alínea anterior mesmo que não a tenha resolvido.)
- **10.3.** (0.75 val.) Justifique a existência, ou não, de g'(2).
- 11. (1,5 val.) Formule matematicamente o seguinte problema, identificando as variáveis, a relação entre elas e a função a optimizar. (Não é para resolver o problema integralmente!)

"Uma caixa sem tampa, de base quadrada, deve ser construída de forma que o seu volume seja $100m^3$. Quais deverão ser as dimensões da caixa de modo a que o material gasto na sua construção seja mínimo?"

Grupo IV

- **12.** Calcule as seguintes primitivas:
 - **12.1.** (1,5 val.) $\int (\sqrt{x} + e^{-5x}) dx$.
 - **12.2.** $(2 \text{ val.}) \int (x^2 + 6) \cos(2x) dx$.
 - **12.3.** (2 val.) $\int \frac{x^3 x^2 + 3x + 2}{x^2 x 2} dx$.
 - **12.4.** (1,5 val.) $\int \sqrt{1-x^2} dx$.

≥© Bom trabalho ...