-

SOUR

SYSTENA

INTELLIGENT QUERY SYSTEM

Technical Reference Manual

Version: 2
Revision: O

COPYRIGHT © 1994, SYSTENA

== O (R 2

R G0 = USRS PP PRSP 2
1.1 DOCUMENT LAYOULceeiiireieeiiiieeee s e e e e e s e e e e e 2
1.2 1QS SOUICE FIlES ..ceiiee ettt e e ennee e 3
T A SRR 5
2 TQL PaISING c..ueeiiiiitieiite ettt sttt ettt b et b e be e b nreennee s 5
2.1 Theigsl file (USING LEX) ..covieiieiiieieeesiie e 6
2.2 Theigsy file (USING YACC).....cccueiiueeiiieiieeieesie et 8
2.3 Lexer - Parser COMMUNICALON.c.ueeieriiiesieesiee e 17
2.4 Structure of the IQL grammar..........c.coveeeieerieenie e 18
2.4.1 Assisted Mode IQL Sub-grammar iSSUES.ccceerveerieeenieesveeninnns 18
2.4.2 Batch Mode IQL sub-grammar iSSUES.........c.ceeeveerieenieenieesieeninens 20
3 Importing the generated code to a WIindOWS DLLccoocvveviiiiiiiiiierieceeseeine 20
3.1 Redirecting the LEeXer iNPUL...........cooueeiiiiiienieesee e 20
3.2 Output inthe Lexer and inthe Parser..........cocveveeiieenie e 23
3.3 The myfunc.c redefinition file.........c.cooiiiiiiii 24
3.4 Importing malloc and realloC............coeiieiiiiiii e 24
3.5 The#define __ DOS dir€CVEe......ccceeeeciee e 25
3.6 TheLarge model of COmMpPilationccooveerieeiiiiiieneeee e 26
T A SR 28
4 1QS main data Structures (I0S.N)eeeueeeieeiiieree e 28
4.1 Handling the repository information (the Set approach)...........cccccveneene. 28
4.1.1 Dynamic Arraysimplementing SEtS.........cooerveerieeeneenieene e 28
4.1.2 ADBSICSEL AP ..o 30
4.2 The ParserState dafatyPe.......ccceveeiieerieeiie e 33
4.2.1 Implementation details of the HIStorycccocveviiiiienieenieceee, 36
4.2.2 The VBState datatype........ccovveriieriieirieeiie e 38
5 ThETQS API (IGS.C) eeeuriiiiiiiiesiie ettt sttt ettt re e nneennee s 39
51 ANAUXITAY TQS AP ...t 49
6 ThelQS Semantic ACtionS APl (BCHIONS.C)covuveeieiiiieiie et 51
6.1 The QS Semantic Actions Auxiliary APlcocoovviiiiiiiierieeee e 64
7 ThelQSVisual BasiC related APoooiieeee e 66
8 1QS MOAUIE CrOSS FEFEIENCE.eeeeceiieeeieeeeiie et re e e e e e e e e e enneeeenes 72
8.1 Crossreferencefor the igS.Cfile......ocuvviiiiiiiiie e 72
8.1.1 IQSAPI Auxiliary fUNCLIONS.........cccueriieiiiesie e 73
8.1.2 St APl fUNCLIONS......ccviiiiiiiie ettt 73
8.1.3 QS API fUNCLIONS......cccvieeiiiieeiieeceeeeree e e e 73
8.1.4 1QS Visua Basic related APl funCtions..........cccocvevevcieeeniieesieeene 75
8.2 Crossreference for the actions.C file........oooveviiiiiiiiiiie 75
8.2.1 1QS Semantic Actions Auxiliary APl functions...........cccccceerveenenenn 75
8.2.2 1QS Semantic Actions API fUNCLIONS..........cccceeviieeiiie e 76
REFEINENCES ...ttt ae e 78

INESC 2361 Qs Technical Reference Manual 1

Part |
1 Context

This document is the Technical Reference manua of the Intelligent Query
Subsystem (1Qs) of the SOUR software system.

It describes the most important implementation issues concerning 1Qs as well as
providing enough information for those in charge with maintenance of the 1Qs module.

This text has a bottom-up style of presentation. It starts by describing certain low-
level implementation aspects, and proceeds towards interface issues. However, the
interface details covered in this document are only the ones sitting below the Visua
Basic/C frontier, that is, only those C implemented functionalities directly callable by
Visual Basic will be discussed.

This bottom-up approach is a convenient way of matching the various
implementation phases of the 1Qs module, reflecting many of the decisions taken and
even some of the constraints found along the development. Therefore, it serves also as a
guideline through the implementation process.

Whenever considered convenient, a little refreshing on some design and
architectural aspects will be provided for a better understanding of the implementation
decision being described.

IQs Functional Specifications & Architecture document [1QS-2.1] should be
carefully read in order to better understand many details of this text.

1.1 Document Layout

The first implementation issues to be discussed are those related to the parsing
mechanism for the Interface Query Language (IQL)?. It seems logical that before starting
with the implementation of the software layer in charge with retrieving information from
the repository, away to recognize and handle query sentences be provided.

Once the parsing problems are solved (at least in what concerns to low-level C
code; note that interface issues are deferred to later treatment, reflecting our bottom-up
approach) it is time to think on the data structures? which keep and handle the
information retrieved. A set of functions well suited to manipulate each particular data
structures will also be presented.

After that, the 1Qs APl is described. The IQs APl is a set of functions built around
the SouRLIB and exclusively concerned with seeking for the objects on the repository
obeying to the present query.

Having the parsing details solved, and the necessary functionalities to access
repository, the Semantic Actions can then be presented.

Irefer to 5 Interface Query Language on [1QS-2.1].
2recall 7 1QS data structure design on [1QS-2.1].

INESC 2361 Qs Technical Reference Manual 2

Some implementation details intimately connected with the interaction Visual Basic
Layer/C Layer will then be discussed. In particular, the way in which the Visual Basic
Layer and the C Layer exchange information). Again, a set of specialized data structures
and functions will be put forward.

Finally, a globa cross reference for all the IQs module functions will be presented.
This cross reference shows the dependences between the 1Qs Module functions and any
other SOURLIB Modules.

1.2 1QS source files

Before introducing the 1Qs Software Layers, it is perhaps convenient to offer a
brief perspective on the relations between the source files implementing those layers. In a
way this disagrees with the above established bottom-up approach, because the tasks
these files implement are, for the moment, unknown. On the other hand, it will help to
better understand the integration and cooperation of the Software parts of the IQs
module.

The below diagram shows the major dependences between the most important files
specific to the IQs module. A full arrow means the source file isincluded in the target file
and a dashed one means that the target is generated using the source description. No
relation with files from other modules of the SOUR project, as well as with Visual C++
1.5 libraries is shown.

igsdefs.h ytab.h igs.|
igs.h actions.h myfunc.c lexyy.c
igs.c actions.c ytab.c igs.y

[1QS Sour module)

Figure 1 - Relevant dependencies between files of the |Qs module

A brief description of each file follows:
- iqsdefs.h is a header file defining admost every 1Qs specific constants,

- ytab.h is a header file automatically generated by Yacc;, Yacc is a tool that
accepts a grammar description and generates C parsing code for that grammars;

3see 2.2 Theigsy file (using Y acc) for more details about this subject.

INESC 2361 Qs Technical Reference Manual 3

a full description of ytab.h is postponed until section 2.3 Lexer-Parser
communication;

- igs.l isthe source file used by Lex to generate lexyy.c; Lex isatool that accepts
pattern descriptions and generates C code implementing a scanner for those
patterns?,

- igs.h is the header file of the IQs API®, defining all the necessary macros, data
types, global variables and function prototypes, in order to retrieve information
from the repository and exchanging it with the interface layer;

- actions.h is the header file containing al the definitions needed to implement the
semantic actions® for the grammar described inigs.y;

- myfunc.c?, contains basic (re)definitions helping the lexical scanning process to
work over astring instead of afile;

- lexyy.c is the lexica analyzer automatically generated by Lex using the igsl
description;

- igs.cisthefile implementing the IQs API.
- actions.c contains the semantic actions code for the grammar described inigs.y;

. ytab.c is the parser automatically generated by Yacc based on the igsy
description;

- igs.y isthe source file used by Y acc to produce ytab.c and ytab.h.

4refer to section 2.1 Theigsl file (using L ex).

Ssee also section 5 The IQS API (igs.c) for a complete description.
6see section 6 The | QS Semantic Actions AP (actions.c).

refer to 3.3 The myfunc.c redefinitions file.

INESC 2361 Qs Technical Reference Manual 4

Part I1
2 1QL Parsing

During the 1Qs design phase, two basic operation modes® evolved, reflecting two
distinct ways of querying the repository:

- the Assisted M ode, providing for a permanent syntactic and semantic assistance
aswell as an exclusively interactive way of query building;

- the Batch Mode, less user-friendly but best suited to those users wishing to
solve large sets of queries at once and possessing a comprehensive knowledge of
the repository structure.

These two operation modes imply two Interface Query Languages®, designed to
cope with the specific demands of each mode, but, at the same time, preserving a
minimal degree of compatibility between them.

The formal description of each IQLs is naturally provided by defining its grammar.
One advantage of this kind of description is the possibility of using tools allowing for the
automatic generation of C code which implements the parsing mechanism for "sentences’
obeying to that grammar.

Having two grammars (each one for a specific operation mode, and so for a
gpecific QL) does not necessarily means of the need for two parsers. It is advantageous
to bring together, if possible, both grammars into a single one in order to generate a
unique parser: one should not forget that the generated C parsing code must be
converted to a WINDOWS 3.1 DLL and therefore it is much easier to deal with only one
parser than with two distinct ones, probably sharing many data structures and functions
(both parsers would have been generated by the same tool) and rising conflicts hard to
solve in automatic generated code environments (to modify generated code can be hard
and error prone).

The tools used to generate the C code in charge with syntactical recognition of
gueries made in both the Assisted and Batch 1QL flavors were Lex & Yacc. Therefore,
the next sections describe the procedure followed in order to have those tools to produce
the parsing code for both 1QLs (for a matter of convenience we will refer from now on to
just one IQL: the one resulting from joining the Batch Mode and the Assisted Mode
variants).

Before that, it should be remembered the role of the so-called Templates* (see
Figure 2). these minimal efficient queries provide (in design terms) for the basic
description of the set of valid tokens Lex must recognize and the set of valid
combinations Yacc must deal with. These combinations match aready the IQL Batch
Mode grammar branch. The IQL Assisted Mode grammar flavor appends to those
combinations only the ones enough to deal with the problems of redundancy and
incompleteness.

Srefer to 4 | QS oper ation modes from [1QS-2.1].
9refer to 5 Interface Query Languagein [1QS-2.1].

INESC 2361 Qs Technical Reference Manual 5

/'l Interface Query Language Kernel Tenpl ates
NUMBER TEMPLATE1 GET ALL CLASS="cl ass" <AttributeDescriptionl>*

NUMBER TEMPLATE2 GET ALL CLASS="cl ass" <AttributeDescription2>*

NUMBER TEMPLATE3 GET ALL CLASS="cl ass" <AttributeDescriptionl>*
[AND | S COVPOUND
<ConpoundDescri ption>*]

NUMBER TEMPLATE4 GET ALL CLASS="cl ass" <AttributeDescriptionl>*
[AND BELONG TO COMPOUND
<ConpoundDescri ption>*]

/1 Interface Query Language non-Kernel Tenpl ates
NUMBER TEMPLATE5 <Query> [LINKED BY "relation" [WTH <Query>]]

NUVBER TEMPLATE6 <Query> [LINKED TO <Query> [BY "relation"]]

NUMBER TEMPLATE7 <Query> [OR <Query>]

NUVBER TEMPLATE8S <Query> [RESTRI CTED TO <AttributeDescriptionl>+]

/1 common definitions

<AttributeDescriptionl> = AND (<GenDescp> | <FacDescp> | <AttDescp>)
<GenDescp> = GENNAME="gennane" AND GENVALUE="genval ue"

<FacDescp> = FACNAME="f acnane" AND FACVALUE="facval ue" AND CONCEPTDI ST>=<Di st >
<At t Descp> = ATTNAME="att nane" AND ATTVALUE="attval ue"

<AttributeDescription2> = (<AttributeDescriptionl>* (AND <PhaDescp>)*)*
[AND <Sl cDescp> <AttributeDescriptionl>*]

<Sl| cDescp> = SLCNAME="sl| chane"

<PhaDescp> = PHANAME="phanane"

<ConpoundDescri ption> = <Attri buteDescriptionl>* (AND <Crl| Descp>)*
<AttributeDescriptionl>*

<Cr| Descp> = CRLNAME="cr | nane"

<Di st > = NUMBER%
<Query> = #NUMBER

NUMVBER = [0-9] +

Figure 2 - The Templates

2.1 Theigs.l file (using Lex)

The contents of igs.l describing to Lex the acceptable tokens for the unified 1QL
grammar Y acc will handle, are:

INESC 2361 Qs Technical Reference Manual 6

A
/* definition section */

int yylook();
int yyback(int *, int);

%

/* some "macros" */

Tpl1 [Tt][Ee] [M[Pp][LIT[Aa][Tt][Ee][1]

Tpl 2 [Tt][Ee] [M[Pp][LIT[Aa][Tt][Ee][2]

Tpl 3 [Tt][Ee] [M[Pp][LIT[Aa][Tt][Ee][3]

Tpl 4 [Tt][Ee] [M[Pp][LIT[Aa][Tt][Ee][4]

Tpl 5 [Tt][Ee] [M[Pp][LIT[Aa][Tt][Ee][5]

Tpl 6 [Tt][Ee] [M[Pp][LIT[Aa][Tt][Ee][6]

Tpl 7 [Tt][Ee] [M[Pp][LIT[Aa][Tt][Ee][7]

Tpl 8 [Tt][Ee] [M[Pp][LIT[Aa][Tt][Ee][8]

Get Al | Ol ass [Gol[Ee] [Tt][1+[Aa][LIT[LIT[T+[Cc][LI][Aa][Ss]]Ss]
And [Aa] [Nn] [Dd]

GenNane [Gol [Ee] [Nn] [Nn] [Aa] [Mnj [Ee]

FacNane [Ff][Aa] [Cc] [Nn] [Aa] [Mni [Ee]

At t Nane [Aa] [Tt][Tt][Nn] [Aa] [M [Ee]

GenVal ue [Gol[Ee][Nn][W][Aa][LI][Uu][Ee]

FacVal ue [Ff1[Aa][Cc][W][Aa][LI][Uu]]Ee]

At t Val ue [Aa] [Tt][Tt][W][Aa][LI][Uu]]Ee]

I sConpound [1i10Ss][1+[Cc][OCo][Mi[Pp][Go][Uu][nN [dD]

Bel ongToConpound [Bb][Ee][LIJ[Oo][Nn][Gg][1+[Tt][Oo]l[]+
[Cc][OCo] [M [Pp][OCo] [Wu][nN [dD]

Cr I Nane [Ccl[RrI[LITIN] [Aa] [M [Ee]

RestrictedTo [Rr][Eel[Ss][TtI[Rr][li][Cc][Tt][Eel[Dd][]1+[Tt][Oo]
Id [VoAR /A @V i\ (V))V _\-0-9a-zA-Z] +

Car dNunber #[0-9] +

% LI STOFI DENT /* specific state to handle lists of identifiers interleaved by
white space */

9o
/* rules section: pattern { action } */

<LI STOFI DENT>{ 1 d} {strcpy(yylval.STR yytext);return(lDENT);}

/* tokens marking the unsuccessful or successful end of a query; */
/* they are not kept in the final query string */

[Aa][Bb][Oo] [Rr][Tt] {return(ABORT);}

[Cc][Hh][Ee][Cc][KK] {return(CHECK) ; }

/* building blocks of any Tenplate */

{Tpl 1} {yylval .| NT = TEMPLATEL; r et ur n(TEMPLATEL); }
{Tpl 2} {yylval .| NT = TEMPLATE2; r et ur n(TEMPLATE2) ; }
{Tpl 3} {yylval .| NT = TEMPLATE3; r et urn(TEMPLATE3); }
{Tpl 4} {yylval .| NT = TEMPLATE4; r et ur n(TEMPLATEA4) ; }
{Tpl 5} {yylval .| NT = TEMPLATES; r et ur n(TEMPLATES) ; }
{Tpl 6} {yylval .| NT = TEMPLATES; r et ur n(TEMPLATES®) ; }
{Tpl 7} {yylval .| NT = TEMPLATE7; r et ur n(TEMPLATE?) ; }
{Tpl 8} {yylval .| NT = TEMPLATES; r et ur n(TEMPLATES) ; }
{Get Al | d ass} {return(GETALLCLASS);}

INESC 2361 Qs Technical Reference Manual

{ And} {return(AND);}

{ GenNane} {yyl val . I NT = GENNANE; r et ur n(GENNAME) ; }

{ FacNane} {yyl val . I NT = FACNANE; r et ur n(FACNAME) ; }

{ At t Nane} {yylval .| NT = ATTNAME; r et ur n(ATTNAME) ; }

{ GenVal ue} {yylval . I NT = GENVALUE; r et ur n(GENVALUE) ; }
{ FacVal ue} {yylval . INT = FACVALUE; r et ur n(FACVALUE) ; }
{AttVal ue} {yylval . I NT = ATTVALUE; return(ATTVALUE); }
{1 sConpound} {return(l SCOVWOUND) ; }

{Bel ongToConpound} {r et ur n(BELONGTOCOVPQOUND) ; }

{Crl Nane} {yylval . INT = CRLNANE; r et ur n(CRLNAME) ; }
[Co] [Rr] {return(OR);}

{RestrictedTo} {return(RESTRI CTEDTO); }

[LIT[Ii]T[Nn][Kk][Ee][Dd][]1+[Bb][Yy] {return(LI NKEDBY);}
[WM[1i][Tt][Hh] {return(WTH);}

[LIJ[Ii][Nn][Kk][Ee][Dd][]+[Tt][Oo] {return(LI NKEDTO);}

[Bb] [Yy] {return(BY);}

[Pp][Hh][Aa] [Nn] [Aa] [Mmi[Ee] {yylval.INT = PHANAME; r et ur n(PHANAME) ; }
[Ss][LIT[Cc][Nn][Aa] [M1 [Ee] {yylval.INT = SLCNAME; r et ur n(SLCNAME) ; }
[Ccl[Col [Nn][Ccl[Eel[Ppl[Tt1[DdI[1i][Ss][Tt] {return (CONDIST);}

{ Car dNunber } {yylval . INT = atoi (yytext+1); return(NUVBER); }

[0-9]1+[% {yytext[yyleng-1]="\0"; yylval.INT = atoi (yytext); return
(NUMBER) ; }

{1d} {strcpy(yyl val . STR yytext);return(l DENT);}

"= {return(yytext[0]);}

"> {return(yytext[0]);}

{return(yytext[0]);}

, {return(yytext[0]);}

"\ {return(yytext[0]);}

: {return(yytext[0]);}
<LI STOFI DENT>"\"" {BEG N I NI TIAL; return(yytext[0]);}
e {BEG N LI STOFI DENT; return(yytext[0]);}
9%

/* no main; Yacc generated code will call yylex */

As it will be seen, the Lexical Analyzer which can be generated from this file does
not work alone, but cooperatively with a'Y acc generated parser.

2.2 Thegs.y file (using Yacc)

The unified grammar for both the Assisted Mode and Batch Mode IQLs is obtained
by moving up the root of both grammars to a common level. This is feasible because the
set of vaid tokens for both grammars is exactly the same. Only the possible valid
sequences are different.

Every function implementing a semantic action has the prefix i gsSA, that is, 1Qs
Semantic Action?0,

The contents of fileigs.y, with a description of the unified IQL grammar acceptable
by Y acc, follow:

10to know more about the Semantic Actions refer to chapter 6 The |QS Semantic Actions API
(actions.c).

INESC 2361 Qs Technical Reference Manual 8

A
/* definition section */

#i ncl ude "actions. h" /* semantic actions nodul e header */

%
/* possible types for yylval (the token recognized by Lex) */
%uni on {
int |NT;
char STR] 255] ;
}

/* type definition for each grammar token */
% oken <I| NT> TEMPLATE1 TEMPLATE2 TEMPLATE3 TEMPLATE4 TEMPLATES TEMPLATEG6
TEMPLATE7 TEMPLATES
% oken <I NT> GENNAME ATTNAME FACNAME GENVALUE ATTVALUE FACVALUE SLCNAME PHANANME
CRLNAME NUMBER
% oken <STR> | DENT
% oken
% oken
% oken

ABORT CHECK
GETALLCLASS AND CONDI ST | SCOMPOUND BELONGTOCOMPOUND OR RESTRI CTEDTO
LI NKEDBY W TH LI NKEDTO BY

/* type for the non-termnal ListOfldent */

% ype <STR> Li st Of | DENT

9o

/* rules section */

/* ROOT of the unified grammar */
I gs bat chl gs

| assistlqgs

/* BATCH node branch */

bat chl gs :

INESC 2361

bat chl gs
bat chl gs
bat chl gs
bat chl gs
bat chl gs
bat chl gs
bat chl gs
bat chl gs

bat chTenpl at el
bat chTenpl at e2
bat chTenpl at e3
bat chTenpl at e4
bat chTenpl at e5
bat chTenpl at e6
bat chTenpl at e7
bat chTenpl at e8

{
{
{
{
{
{
{

{

i gsSAcheck();
i gsSAcheck();
i gsSAcheck();
i gsSAcheck();
i gsSAcheck();
i gsSAcheck();
i gsSAcheck();
i gsSAcheck();

bat chTenpl at el
bat chTenpl at e2
bat chTenpl at e3
bat chTenpl at e4
bat chTenpl at e5
bat chTenpl at e6
bat chTenpl at e7
bat chTenpl at e8

{

{
{
{
{
{
{
{

i gsSAcheck();
i gsSAcheck();
i gsSAcheck();
i gsSAcheck();
i gsSAcheck();
i gsSAcheck();
i gsSAcheck();
i gsSAcheck();

}

[S S S)

IQs Technical Reference Manual

/* ASSI ST node branch */

assistlgs: assi st Tenpl at el
assi st Tenpl at e2
assi st Tenpl at e3
assi st Tenpl at e4
assi st Tenpl at e5

assi st Tenpl at e7

assi st Tenpl at e8

CHECK {
ABORT {

/* COMMON rules */

[
[
[
[
| assi st Tenpl at e6
[
[
[
[

i gsSAcheck(); }
i gsSAabort(); }

Li st OF | DENT : | DENT {strcpy($$, $1);}
| Li st OF | DENT | DENT {strcat($1," ");strcat($1, $2);strcpy($s$, $1);}

bat chTenpl at el

bat chTenpl at el11l

bat chAt t r Desc

bat chGenDesc

bat chFacDesc

bat chAt t Desc

INESC 2361

NUMBER { bat chl gsSAcheckl ndex($1); } TEMPLATEl

{ igsSAinitCGetAl |l O ass($3); } CGETALLCLASS '= '"\"'
Li st OFIDENT '\""' { iqgsSAget Aoi dsBel | owCl ass($8); }
bat chTenpl at el

AND bat chAttr Desc

bat chGenDesc bat chTenpl at ell
bat chFacDesc batchTenpl atell
bat chAtt Desc batchTenpl atell

GENNAME { igsSAafterAttrTypeChoice($1); } '=" "\"'
Li st OFIDENT '\"' { iqgsSAget AttrVal ues($1, $5); } AND
GENVALUE '=" "\"' ListOIDENT "\"'

{ iqgsSAget Aoi dsByVal ue($9, $5, $12, -1); }

FACNAME { iqgsSAafterAttrTypeChoice($1); } '=" "\"'
Li st OFIDENT '\"' { iqgsSAget AttrVal ues($1, $5); } AND
FACVALUE '=" "\"' ListOFIDENT "\"'

AND CONDI ST '>'"'=" NUMBER

{ iqgsSAget Aoi dsByVal ue($9, $5, $12, $18); }

ATTNAME { iqgsSAafterAttrTypeChoice($1); } '=" "\"'
Li st OFIDENT '\"' { iqgsSAget AttrVal ues($1, $5); } AND
ATTVALUE '='" "\"' ListOFIDENT "\"'

{ iqgsSAget Aoi dsByVal ue($9, $5, $12, -1); }

IQs Technical Reference Manual

10

assi st Tenpl atel

TEMPLATEL {
| TEMPLATE1 GETALLCLASS '=" "\"'

igsSAinitGet Al l O ass($1); }
Li st Of I DENT "\ "'

{ igsSAget Aoi dsBel | owd ass($5); }

| TEMPLATE1 GETALLCLASS '=" "\"'

Li st OF I DENT "\ "'

AND AttrDesc

AttrDesc : At t r Nanme
| At tr NaneAnd AttrDesc
| At tr NaneEql d
| At tr NaneEql dAnd AttrDesc
| At t r NanmeEql dAndAt t r Val ueEql d
| At tr NanmeEql dAndAt t r Val ueEql dAnd AttrDesc
At t r Nanme GENNAME { igsSAafterAttrTypeChoice($1); }
| FACNAME { iqgsSAafterAttrTypeChoice($1l); }
| ATTNAME { iqgsSAafterAttrTypeChoi ce($1); }
At tr NaneAnd : GENNAME AND
| FACNAVE AND
| ATTNAME AND
At t r NameEql d: GENNAME ' =" "\"' ListOIDENT '\"" {iqsSAget AttrVal ues(%$1, $4); }
| FACNAME ' =" "\"' ListOfIDENT '\"' {iqgsSAgetAttrVal ues($1, $4); }
| ATTNAME ' =" "\"' ListOfIDENT '\"' {iqgsSAgetAttrVal ues($1,$4); }
At t r NaneEql dAnd: GENNAME ' =" "\"' ListOIDENT "\"' AND
| FACNAME '=" "\"' ListOIDENT "\"' AND
| ATTNAME '=" "\"' ListOIDENT "\"' AND

At tr NaneEql dAndAt t r Val ueEql d:

At tr NanmeEql dAndAt t r Val ueEql dAnd:

INESC 2361

GENNAME ' =" "\"' ListO I DENT "\"'
"=t '\"" ListOFIDENT "\"'
{ igsSAget Aoi dsByVal ue($7, $4, $10,

AND GENVALUE

-1}

FACNAME '='" '"\"' ListOFIDENT '"\"'" AND FACVALUE

=t '\" ListOfFIDENT "\ "'

AND CONDI ST '>'"'=" NUMBER

{ iqgsSAget Aoi dsByVal ue($7, $4, $10, -1);}

ATTNAME '=" '"\"' ListOIDENT '"\"'" AND ATTVALUE

=t '\" ListOfFIDENT "\ "'

{ iqgsSAget Aoi dsByVal ue($7, $4, $10, -1); }
GENNAME '='" "\"' ListOFIDENT '"\"' AND
GENVALUE '=" "\"' ListOIDENT '\"" AND
FACNAME '='" '"\"' ListOFIDENT "\"' AND
FACVALUE '='" "\"' ListOIDENT '"\"' AND
CONDI ST '>''=" NUMBER AND
ATTNAME '='" "\"' ListOFIDENT '"\"' AND
ATTVALUE '=" '"\"' ListOFIDENT '\"' AND

IQs Technical Reference Manual

bat chTenpl at e2

bat chTenpl at e22

bat cht 2At t r Desc

bat chSl cDesc

bat chPhaDesc

assi st Tenpl at e2

t 2Attr Desc

Sl cDesc

PhaDesc

INESC 2361

NUMBER { bat chl gsSAcheckl ndex($1); } TEMPLATE2

{ iqsSAinitCGetAll O ass($3); } CGETALLCLASS '= '"\"'
Li st OFIDENT '\""' { iqgsSAget Aoi dsBel | owCl ass($8); }
bat chTenpl at e22

| AND bat cht 2At tr Desc

bat chGenDesc bat chTenpl at e22
bat chFacDesc bat chTenpl at e22
bat chAtt Desc bat chTenpl at e22
bat chSl cDesc batchTenpl atell
bat chPhaDesc bat chTenpl at e22

1
—

SLCNAME { iqgsSAafterAttrTypeChoice($1); }
Li stOF I DENT "\"' { iqsSAget Aoi dsBySl c($5); }

PHANAME { iqgsSAafterAttrTypeChoice($1); } A
Li st OfF I DENT "\ "' { iqgsSAget Sl csAndAoi dsByPha($5); }

TEMPLATE2 { iqsSAinitGetAl | Class($1); }

| TEMPLATE2 GETALLCLASS '=" "\"' ListOFI DENT "\"'
{ igsSAget Aoi dsBel | owd ass($5); }

| TEMPLATE2 GETALLCLASS ' "\"" ListOFIDENT '"\"' AND
t2AttrDesc

At t r Nanme

At tr NaneAnd t 2AttrDesc

At tr NaneEql d

At tr NanmeEql dAnd t 2Attr Desc

At tr NaneEql dAndAt t r Val ueEql d

At tr NanmeEql dAndAt t r Val ueEql dAnd t 2Attr Desc
Sl cDesc

PhaDesc

SLCNAME { igsSAafterAttrTypeChoice($1); }

SLCNAME AND t 2Attr Desc

SLCNAME '=' "\"' ListOFIDENT '\"' { iqsSAgetAoi dsBySlc($4);
SLCNAME '=' "\"' ListOIDENT '\"'" AND t2AttrDesc

PHANAME { iqgsSAafterAttrTypeChoice($1); }
PHANAME AND t 2Attr Desc

PHANAME '=" "\"' ListOFI DENT "\"'
{ iqgsSAget Sl csAndAoi dsByPha($4); }
PHANAME '='" "\"' ListOFIDENT '"\"' AND t2AttrDesc

IQs Technical Reference Manual

}

12

bat chTenpl at e3

bat chTenpl at €33

bat chTenpl at €333

bat chTenpl at e3333 :

bat chCAt t r Desc

NUMBER { bat chl gsSAcheckl ndex($1); } TEMPLATE3

{ iqsSAinitCGetAll O ass($3); } CGETALLCLASS '= '"\"'
Li st OFIDENT '\""' { iqgsSAget Aoi dsBel | owCl ass($8); }
bat chTenpl at €33

AND bat chAttrDesc bat chTenpl at €333
ANDI SCOMPOUND { i gsSAafterl sConmpoundPressed();}
bat chTenpl at €3333

ANDI SCOMPOUND { i gsSAafterl sConmpoundPressed();}
bat chTenpl at €3333

AND bat chCAt tr Desc

bat chGenDesc bat chTenpl at e3333
bat chFacDesc bat chTenpl at e3333
bat chAt t Desc bat chTenpl at 3333
bat chCr| Desc bat chTenpl at e3333

bat chCr | Desc CRLNAME { igsSAafterAttrTypeChoice($1); } '=" "\"'
Li st OFIDENT '\"' { iqgsSAget Aoi dsByCar act Rel ($5); }
I e e Tenpl at e3 ASSI STED node rul €---------cuemooon */

assi st Tenpl at e3

At tr DescBef oreC

INESC 2361

TEMPLATE3 { igsSAinitGetAll Class(%$1); }

TEMPLATE3 GETALLCLASS '='" "\"' ListOFI DENT "\"'

{ igsSAget Aoi dsBel | owd ass($5); }

TEMPLATE3 GETALLCLASS '='" '"\"' ListOFIDENT '"\"' AND
AttrDesc

TEMPLATE3 GETALLCLASS ' "\"' ListOFIDENT "\"' AND
At t r DescBef or eC | SCOMPOUND
{ iqgsSAafterlsConpoundPressed(); }

TEMPLATE3 GETALLCLASS '='" '"\"' ListOFIDENT '"\"' AND
At t r DescBef oreC | SCOMPOUND AND CAttr Desc

TEMPLATE3 GETALLCLASS '='" '"\"' ListOFIDENT '"\"' AND
| SCOWPOUND { i gsSAafterl sConpoundPressed(); }
TEMPLATE3 GETALLCLASS '='" '"\"' ListOFIDENT '"\"' AND

| SCOVPOUND AND CAttr Desc

At t r NaneAnd

At tr NameAnd AttrDescBeforeC

At t r NaneEql dAnd

At t r NaneEql dAnd At tr DescBeforeC

At t r NaneEqgl dAndAt t r Val ueEql dAnd

At tr NanmeEql dAndAt t r Val ueEql dAnd At tr DescBef oreC

IQs Technical Reference Manual

13

CAttrDesc

bat chTenpl at e4

bat chTenpl at e44

bat chTenpl at e444

assi st Tenpl at e4

INESC 2361

At t r Nanme

At tr NaneAnd CAttrDesc

At t r NanmeEql d

At t r NanmeEqgl dAnd CAttrDesc

At t r NaneEql dAndAt t r Val ueEql d

At tr NanmeEql dAndAt t r Val ueEql dAnd CAttr Desc
CRLNAME { iqgsSAafterAttrTypeChoice($1); }
CRLNAME AND CAttrDesc

CRLNAME '=" "\"' ListOIDENT "\"'

{ igsSAget Aoi dsByCaract Rel ($4); }

CRLNAME '=' "\"' ListOIDENT '\"'" AND CAttrDesc

NUMBER { bat chl gsSAcheckl ndex($1); } TEMPLATE4

{ igsSAinitCGetAll O ass($3); } CGETALLCLASS '=" "\"'
Li st OFIDENT '\"' { iqgsSAget Aoi dsBel | owCl ass($8); }
bat chTenpl at e44

| AND bat chAttrDesc bat chTenpl at e444

| ANDBEL ONGT OCOMPOUND
{ igsSAafterBel ongToConpoundPressed(); }
bat chTenpl at €3333

| ANDBEL ONGTOCOMPOUND
{ igsSAafterBel ongToConpoundPressed(); }
bat chTenpl at €3333

: TEMPLATE4 { iqsSAinitGetAll O ass($1); }

| TEMPLATE4 GETALLCLASS '=" "\"' ListOFI DENT "\"'
{ igsSAget Aoi dsBel | owd ass($5); }

| TEMPLATE4 GETALLCLASS ' "\"" ListOFIDENT '"\"' AND
AttrDesc

| TEMPLATE4 GETALLCLASS '='" '"\"' ListOFIDENT '"\"' AND
At tr Desc Bef or eC BELONGTOCOMPOUND
{ igsSAafterBel ongToConpoundPressed(); }

| TEMPLATE4 GETALLCLASS '='" '"\"' ListOFIDENT '"\"' AND
At t r DescBef or eC BELONGTOCOMPOUND AND CAttr Desc
| TEMPLATE4 GETALLCLASS '=" "\"' ListOFI DENT "\"'
BEL ONGTOCOMPOUND
{ igsSAafterBel ongToConpoundPressed(); }
TEMPLATE4 GETALLCLASS '=" "\"' ListOFI DENT "\"'

BELONGTOCOVPOUND AND CAt tr Desc

IQs Technical Reference Manual

14

bat chTenpl at e5

bat chTenpl at €55

bat chTenpl at €555

assi st Tenpl at e5

bat chTenpl at e6

bat chTenpl at €66

bat chTenpl at €666

assi st Tenpl at e6

INESC 2361

NUMBER { bat chl gsSAcheckl ndex($1); } TEMPLATES
{ igsSA nitQuery($3); } NUMBER
{ igsSAget Aoi dsFronmQuery($5); } batchTenpl at e55

LI NKEDBY '\"' ListOFI DENT "\"'
{ i gsSAget Sour cesByLi nk($3); } batchTenpl at €555

W TH NUMBER { #ifdef _ DOS

i gsSAget Sour cesByLi nkAndSi nks(i gsSt at e. i gsLNKNanes. nanes, $2) ;

#endi f }

TEMPLATES { iqgsSAinitQery($1); }

TEMPLATE5S NUMBER { i gsSAget Aoi dsFronQuery($2); }
TEMPLATE5 NUMBER LI NKEDBY '\"' ListOFI DENT "\"'

{ i gsSAget Sour cesByLi nk($5); }

TEMPLATE5S NUMBER LI NKEDBY '\"' ListOFIDENT '"\"'" WTH
NUMBER { i qsSAget Sour cesByLi nkAndSi nks($5, $8); }

NUMBER { bat chl gsSAcheckl ndex($1); } TEMPLATE6
{ igsSAi nitQuery($3); } NUMBER
{ igsSAget Aoi dsFronmQuery($5); } batchTenpl at e66

LI NKEDTO NUMBER { i qsSAget Sour cesAndLi nksBySi nks($2); }
bat chTenpl at €666

BY "\"' ListOFIDENT '\"" { iqgsSAget SourcesByLink($3); }

TEMPLATE6 { iqgsSAi nitQery($1); }

TEMPLATE6 NUMBER { i gsSAget Aoi dsFronmQuery($2); }
TEMPLATE6 NUMBER LI NKEDTO NUMBER

{ iqgsSAget Sour cesAndLi nksBySi nks($4); }
TEMPLATE6 NUMBER LI NKEDTO NUMBER BY '\ "'
{ iqgsSAget Sour cesByLi nk($7); }

Li st Of I DENT "\ "'

IQs Technical Reference Manual

15

bat chTenpl at e7

bat chTenpl at e77

assi st Tenpl at e7

bat chTenpl at e8

bat chTenpl at €88

assi st Tenpl at e8

9o

#i ncl ude "myfunc.c"

/* joining the Lex
/* and producing a

#ifdef _ DOS__

#i nclude "l exyy.c"

#el se

#include "l ex.yy.c"

#endi f

NUMBER { bat chl gsSAcheckl ndex($1); } TEMPLATE7?
{ igsSA nitQuery($3); } NUMBER
{ igsSAget Aoi dsFromQuery($5); } batchTenpl ate77

OR NUMBER { i gsSAqueryUnion($2); }

TEMPLATE?7 { iqgsSAinitQery($1); }
TEMPLATE7 NUMBER { i gsSAget Aoi dsFronmQuery($2)

TEMPLATE7 NUMBER OR NUMBER { i gsSAqueryUni on($4)

NUMBER { bat chl gsSAcheckl ndex($1); }
TEMPLATES { iqsSAi nitQuery($3); } NUMBER
{ igsSAget Aoi dsFromQuery($5); } batchTenpl at e88

RESTRI CTEDTO bat chAt tr Desc

TEMPLATE8 { iqgsSAi nitQery($1); }
TEMPLATE8 NUMBER { i gsSAget Aoi dsFronmQuery($2)
TEMPLATE8 NUMBER RESTRI CTEDTO AttrDesc

}

}

}

/* mygetc, myputc, yyerror and yywap (re)definitions

generated code at the end of the Yacc generated code */

uni que nodul e containing the scanner and the parser

*/

*/

INESC 2361

IQs Technical Reference Manual

16

2.3 Lexer - Parser communication

When a Lex scanner and a Yacc parser are used in a cooperative way, the Lex
scanner main routine, yylex, acts as a subroutine of yyparse, the main routine of the
Y acc parser.

The Lexer scans the input string for the character patterns specified in his rule's
section. Whenever a valid pattern (or token), is found it returns a token specific integer
code to Yacc, and optionally the token itself via one of the fields (token data type
dependent) of the yylval union, defined inigs.y. Then, Y acc manages to match the token
code within one of his grammar rules. If the matching is successful, the eventual semantic
action is executed.

The token specific integer codes (which must be known by both the Lexer and the
Parser) are only generated for those tokens specified in the % oken declarationsin the / *
definition section */ of igsy.

The file ytab.h, containing that (and eventually other) information that must be
shared by the Lexer and the Parser, is shown next:

#ifdef __DOS__

defi ne TEMPLATE1 257
define TEMPLATE2 258
define TEMPLATE3 259
define TEMPLATE4 260
define TEMPLATES 261
define TEMPLATE6 262
define TEMPLATE7 263
define TEMPLATE8 264
define GENNAME 265
define ATTNAME 266
defi ne FACNAME 267
defi ne GENVALUE 268
define ATTVALUE 269
defi ne FACVALUE 270
define SLCNAME 271
define PHANAME 272
define CRLNAME 273
defi ne NUMBER 274
define | DENT 275
define ABORT 276
define CHECK 277
define GETALLCLASS 278
define AND 279

define CONDI ST 280
define | SCOWPOUND 281
def i ne BELONGTOCOVPOUND 282
define OR 283

defi ne RESTRI CTEDTO 284
defi ne LI NKEDBY 285
define WTH 286
define LI NKEDTO 287
define BY 288

#endi f

H O O O OH OH OH OH OH H OH OH OHOHHHOHOHHHHOHOHHHHHHHHHH

INESC 2361 Qs Technical Reference Manual 17

2.4 Structure of the IQL grammar

The Assisted Mode branch and the Batch Mode branch of the unified QL
grammar, as depicted in the igs.y file, despite sharing the tokens (and thus based on the
same Lexer), deeply differ in their structure. They were tailored to fulfill two different
(although complementary) modes of operation: batch or interactive query resolution.

Both grammars are left-recursive in order to let the parsing process to be a little
more efficient.

2.4.1 Assisted Mode IQL sub-grammar issues

Being interface-event dependent, the Assisted Mode sub-grammar has to
deal with afew specific issues:

- redundancy: a sequence of repeated tokens (for instance originated by
repeated mouse clicks in the same button) should produce the same result
as one instance of the same token. Redundancy is a very often situation in
the Interface layer, but it is not handled there; instead, it must be
recognized by the Parser layer which, via semantic actions, will have to
prevent it from remaning in the query text and so providing for
compatibility with Batch Mode;

- incompleteness: a sequence of one or more tokens may not imply any
object filtering; instead, they could stand for a valid sequence of interface
actions not producing any refinement of the present query solution. Again,
and for compatibility with Batch Mode, incompleteness is not allowed to
stay in the final query text. Only those tokens whose recognition implied
object filtering will remain.

- alternation between Interface Layer and Parser Layer control over
the IQs module. This feature reflects an implementation constraint: it would
be desirable to have the Lexer in background, in an endless loop, waiting
for tokens to be recognized, while the Interface Layer would provide for
feeding it. Infact, Lex & Yacc were tailored for this kind of behaviour, but,
in the cooperative multitasking environment of WINDOws 3.1, which lacks
the notion of process (or preemptive multitasking), this introduces
communication and synchronization problems between the two Layers in
the case we want them to work concurrently!l. An easier way isto let the
control aternate between the Interface Layer and the Parser Layer. Every
time an Interface event produces a token (or a small set of tokens, not
semantically dividable), the sentence so far built is added that token and
again submitted to the Parser Layer. The IQL Assisted Mode sub-grammar
will be highly partitioned because it must predict every valid situation in
which the query phrase can grow. Also,

11 Threads could have been a valid solution to this problem; however, in WinDows 3.1, threads
are hard to code and to maintain.

INESC 2361 Qs Technical Reference Manual 18

the semantic actions will be terminal, that is, they will refer only to the
token (or small set of tokens) last added to the query text. Therefore, the
rules of the IQL Assisted Mode sub-grammar assume a stair-fashion,
reflecting this behaviour.

A piece of igsy, with an Assisted Mode rule, will help to make these
details clear:

R LT T Tenpl at el ASSI STED node rul @---------cememooon */
/* Note the terminal semantic actions ... */
assi st Tenpl at el : TEMPLATEL { igsSAinitGetAl |l Class(%$1); }
| TEMPLATE1 GETALLCLASS '=" "\"' ListOFI DENT "\"'
{ igsSAget Aoi dsBel | owCl ass($5); }
| TEMPLATE1 GETALLCLASS '='" "\"' ListOFI DENT "\"'

AND AttrDesc

/* Note the stair fashion; every valid growing possibilities for a sentence */
/* which at | east matched TEMPLATE1 GETALLCLASS '=' '"\"' ListOIDENT '\"' AND*/
/* are considered */

AttrDesc : At t r Nanme

At tr NaneAnd AttrDesc

At t r NaneEql d

At t r NanmeEql dAnd AttrDesc

At tr NaneEql dAndAt t r Val ueEql d

At tr NanmeEql dAndAt t r Val ueEql dAnd AttrDesc

/* To exenplify redundancy and i nconpl eteness take a | ook at the next two */
/* rules: */

At tr Name : GENNAMVE { igsSAafterAttrTypeChoi ce($1); }
| FACNAME { iqgsSAafterAttrTypeChoice($1l); }
| ATTNAME { iqgsSAafterAttrTypeChoice($1); }

At tr NameAnd : GENNAME AND

| FACNAVE AND

| ATTNAME AND
/* It is then possible to have TEMPLATEL GETALLCLASS '=" '\"' ListO I DENT "\"'*/
/* AND GENNAME AND GENAME ... etc; this introduces: */
/* redundancy: the effect is the same of having just one GENNAME token; */
/* the semantic action { iqgsSAafterAttrTypeChoice($1l); } is */
/* executed tw ce; */
/* inconpl eteness: the semantic action { igsSAafterAttrTypeChoice($1l); } */
/* executed every tinme GENNAME is recogni zed, does not refine */
/* the present query solution; */

/* The Mnimal Efficient Forrnlz, resulting fromelimnating redundancy and */
/* inconpl eteness woul d be TEMPLATE1 GETALLCLASS '=' '\"' ListOf I DENT "\"' */

12 vefer to 5 Interface Query Language at [|QS-2.1].

INESC 2361 Qs Technical Reference Manual 19

2.4.2 Batch Mode IQL sub-grammar issues

This branch of the unified 1QL grammar can be directly derived from the
Templates specification. This sub-grammar is smpler and smaler than the
Assisted Mode one, because:

- gnce it handles only Minima Efficient Forms, it does not have to ded
with redundancy and incompleteness,

- the Batch Mode is akind of "silent" operation mode: the Interface Layer
gives the control of the execution flow to the Parser Layer every time a
batch of queries has to be recognized and solved; then, it waits patiently
until all the queries in the batch are solved or an error occurs. There's no
aternation between the Interface Layer and the Parser Layer, therefore
semantic actions can aternate with tokens within the grammar rules.

For instance, consider the three rules for the non-terminal
assi st Tenpl at el in the previous example with Tenpl at el ASSI STED node
rul e against the equivalent rule in Batch Mode:

I e e Tenpl atel BATCH node rul @------mmmmmamaooooo */
bat chTenpl at el : NUMBER { bat chl gsSAcheckl ndex($1); } TEMPLATElL
{ igsSAinitGetAl |l G ass($3); } GETALLCLASS '='" "\"'

Li st OFIDENT '\""' { iqgsSAget Aoi dsBel | owCl ass($8); }
bat chTenpl at el1l

/* etc ... */

3 Importing the generated code to a Windows DLL
The automatically generated code for the Lexer and the Parser is not ready to be

directly used in a WiNDOwWsS 3.1 DLL. This chapter describes the necessary
modifications.

3.1 Redirecting the Lexer input
This section is based on the work described at [GF93].
By default, the lexical analyzer i nput () macro scans through the standard input

using the cal get c(yyi n). In the lexyy.c file, both the i nput () macro and the yyi n
declarations are:

INESC 2361 Qs Technical Reference Manual 20

define input() (((yytchar=yysptr>yysbuf?U(*--y ysptr):getc(yyin)==107?
(yyl i neno++, yytchar): yyt char)==EOF?0: yyt char)

FILE *yyin = {stdin};

Instead of scanning stdin, what we really want is the Lexer to check for the tokens
in amemory string; this string will be the query synthesized in Assisted Mode or one of a
batch of queriesin the Batch Mode.

In order to redirect the Lexer input from the stdin to a memory string, the
automatically generated yylex.c file must suffer afew modifications:

- substitute the FI LE *yyin = {stdin}; declaration by char *yyi n;

- in the macro definition of i nput () substitute get c(yyi n) by nyget c(yyi n++)
and ECF by o.

That is, thei nput () macro and theyyi n declaration should be:

define input() (((yytchar=yysptr>yysbuf?U(*--yysptr):nygetc(yyin++))==107?
(yyl i neno++, yytchar):yyt char)==0?0: yyt char)

char *yyin;

Thenyget ¢ functionis:

int nygetc(char * strin)
{

int c;
return(c=*strin);

}
It is defined in the myfunc.c file, which has some other useful redefinitionsts.

All that is necessary now is to make yyi n point to our string in memory before
yyl ex() startsthe Lexer. Oncetheyyparse() function calsyyl ex(), that can be done
in the Parser file generated by Y acc: ytab.c. All weneed is.

- to modify the yypar se function
fromint yyparse(void)
toint yyparse(char *str)
in order to let yypar se receive the string to be scanned as a parameter;

- to add yyi n=str; to the body of the yyparse function, but before yyl ex is
invoked.

Brefer to 3.3 The myfunc.c redefinitionsfile

INESC 2361 Qs Technical Reference Manual 21

Figure 3.1 and 3.2 show yyparse as generated by Yacc and after these
modifications, respectively.

/* yyparse AS GENERATED BY YACC */

/*
** yyparse - return O if worked, 1 if syntax error not recovered from
*/
int
yyparse()
{
regi ster YYSTYPE *yypvt; /* top of value stack for $vars */

unsi gned yymaxdepth = YYMAXDEPTH,

/*

** |nitialize externals - yyparse may be called nore than once
*/

yyv = (YYSTYPE*) nal | oc(yynaxdept h*si zeof (YYSTYPE)) ;

yys = (int*)mall oc(yynaxdept h*si zeof (int));

/* REMAI NI NG yyparse CODE */

Figure 3.1-yyparse &S generated by Yacc

/* yyparse AFTER MODI FI CATI ONS */

/*
** yyparse - return O if worked, 1 if syntax error not recovered from
*/

int
yyparse(char *str) /* HEADER REDEFI NI TI ON */

{
regi ster YYSTYPE *yypvt; /* top of value stack for $vars */
unsi gned yymaxdepth = YYMAXDEPTH,

/*

** |nitialize externals - yyparse may be called nore than once
*/

yyv = (YYSTYPE*) nal | oc(yyneaxdept h*si zeof (YYSTYPE)) ;

yys = (int*)mall oc(yynmaxdept h*si zeof (int));

yyin = str; /* yyin REDI RECTION */

/* REMAI NI NG yyparse CODE */

Figure 3.2 - yypar se after modifications

INESC 2361 Qs Technical Reference Manual 22

3.2 Outputin the Lexer and in the Parser

Output in the lexyy.c and in the ytab.c generated files must be also carefully
controlled. By default, stdout is used. Once that is unacceptable in a WiINDOWS 3.1 DLL,
we must avoid stdout based output.

In the Parser generated file, ytab.c, al the code that writes to the stdout is isolated
between the #i f YYDEBUG and #endi f pre-processor directives. Therefore, compiling
the file without defining YYDEBUG solves the problem (there's an exception concerning the
function yyer r or ; see section 3.3 for more details).

In the Lexer generated file, lexyy.c, the #i f LEXDEBUG and #endi f pre-processor
directives define ailmost every code that writes in the stdout, and like in ytab.c, not
defining LEXDEBUG during compilation prevents access to stdout. However, there are also
three other situations that must be handled:

1. the out put Macro must be redefined:

from# define output(c) putc(c,yyout)
to# define output(c) nyputc(c)

becauseyyout isdeclared asFI LE *yyout = {stdout};
The nyput ¢ functionis;

int nyputc()
{

return(1l);

}

and like nyget c isdefined in the myfun.c filel#

2. the ECHO macro, defined as# define ECHO fprintf(yyout, "%",yytext),
should not be used anywhere in the lexyy.c file (it's enough not to use it in the
action C code for a patternin theigs.l file);

3. thelast four lines of the function yyl ex are:

defaul t:

fprintf(yyout,"bad switch yyl ook %", nstr);
} return(0); }

/* end of yylex */

and so thecall tof pri ntf must be avoided by nesting that line in acomment,
for instance.

1refer to 3.3 The myfunc.c redefinitions file

INESC 2361 Qs Technical Reference Manual 23

3.3 The myfunc.c redefinition file

The file myfunc.c contains the definition of the nyget ¢ and nyput ¢ functions as
well as the redefinition of the yyerror function used by ytab.c and the redefinition of
the yywr ap function used by lexyy.c.

By default, the yyerror function, called in some error situations during lexica
analysis, prints a message in the stdout. Because we must avoid that in the DLL
environment, we redefined the function using a pre-processor directive to code the
environment in which it is being executed.

The yywr ap function tells what to do when encountering the end of the string (or
the end of filewhenyyi n isaFI LE* pointing to stdin) being scanned. Returning 1 makes
the scanner returns a zero token to report the end of the string. This is the default
behaviour but this redefinition makes sure that happens.

The contents of the file myfunc.c follow:

int nygetc(char * strin)
{

int c;

return(c=*strin)

}

int nyputc()
{

return(l);

}

int yyerror(char *s)
{
#ifdef __DOS__

return 1
#el se

(void)printf("Error: %\n",s)

#endi f
}

int yywap()
{

return 1

}

3.4 Importing malloc and realloc

Thefirst line of code of thefileytab.cis:

extern char *malloc(), *realloc();

INESC 2361 Qs Technical Reference Manual 24

and it must be nested inside a comment if we want to successfully compile ytab.c

because
#i ncl ude "actions. h"

already includes the libraries for those functions and being that include directive in
the definition section of igs.y, is copied verbatim to the beginning of ytab.c.

3.5 The #define __ DOS__ directive

The automatic code generation using Lex & Yacc took place in a UNIX
environment (although DOS versions of these tools can also be found).

Developing the Parser Layer in UNIX allowed for a quick and easy automation of
all the previoudy discussed modifications one needed to perform in order to use the
generated code in a DLL: a simple script using common UNIX tools (as head and sed)
was enough. It even was possible to test the parser, checking for grammar construction
errors as well as scanning problems.

Although the semantic actions were not implemented at this phase, their prototypes
were more or less stable since the design phase and so we could have calls to semantic
actions executing nothing. After all, we just wanted to simulate the behaviour of the
parser. Their prototypes, however, aready reflected some details of the DLL C code
style, namely the use of FAR pointers as parameters.

Because FAR pointers were unknown in the UNIX world (or any other
environment not defining that variant), we ended with two prototype definitions for each
semantic action: one with FAR type pointers (to be compiled when building the DLL in
the DOS world) and other with "simple" pointers (UNIX compatible).

The #define __DOS__ and #endi f directives alowed for this "double identity"
for the semantic actions. Later, when the body of the semantic actions was fully
implemented, we could still test just the parsing mechanism because this method could
also be used to deactivate the code we didn't want to be compiled (and therefore
executed).

In fact, everything we wanted not to be accessible on the UNIX side or in the DOS
side could be under this kind of control: to compile the code nested between the
#define _ DOS__ and #endi f, it would be enough to make the __ DOs__ symbol a C
preprocessor parameter.

The files actions.h and actions.c, the header file and the implementation file of the
semantic actions, respectively, make full use of the #define _ DOS__ directive. For
instance, consider the Figure 4.1 and Figure 4.2, with extracts from actions.h and
actions.c.

#ifdef __DOS__

voi d i qsSAget Aoi dsBel | owd ass(char FAR *);
#el se

voi d i qsSAget Aoi dsBel | owd ass(char *);
#endi f

Figure 4.1 - a"double identity" semantic action prototype

INESC 2361 Qs Technical Reference Manual 25

#ifdef __DOS

voi d i gsSAget Aoi dsBel | owd ass(char FAR * cl ass)
#el se

voi d i gsSAget Aoi dsBel | owd ass(char * cl ass)
#endi f

{

#ifdef __DOS__
if (igsState.igsBatchOn && batchlgsSemanticError()) return

/* REMAI NI NG OF i qsSAget Aoi dsBel | owCl ass */

#endi f

}

Figure 4.2 - a"double identity" semantic action body

3.6 The Large model of compilation

The modifications performed over the code generated from Lex & Yacc still aren't
enough to make sure the code will execute in a DLL environment. The code will
compile, but probably will hang the system with a General Fault Protection Error due to
bad memory access. DLLs have strict rules concerning memory references and
operations, namely:

- external, global or static variables reside in the DLL Data Segment; by default, if
not explicitly FAR, a memory reference in a DLL is considered to be made
relatively to the beginning of his Data Segment, and so taking the address of
those type of variables and using it is peaceful;

- function parameters and local variables use the Stack Segment of the caller of
the DLL (the DLL has no Stack Segment).

As we saw, the code automatically generated by Lex & Yacc (UNIX or DOS
versions) does not use FAR pointers. Therefore, if somewhere in that code the address of
a function parameter or a local variable is taken, the Stack Segment reference will be
lost, only remaining the Offset part, which will be assumed to be relative to the beginning
of the DLL Data Segment! Thiswill aimost certainly bring problems.

Very often, the compiler will detect these situations and so one could think of
modifying in situ the code generated by Lex & Yacc. Generated code, however, should
not be modified unless there is no alternative.

A simple and effective way to solve the problem is to compile with the Large
model. Therefore, all pointers are FAR by default, and we don't need to care about the
possibility of having the generated code to violate the DLL strict memory access
philosophy.

INESC 2361 Qs Technical Reference Manual 26

Using the Large memory model does not mean that the code implementing the
Semantic actions and the IQs APl no longer should follow the DLL rules. In fact, if we
compromise with those rules while coding is taking place we can think of using another
Parser in the future, perhaps already respecting those rules; therefore, we would have the
other modules ready to be plugged, without the effort of converting them into DLL

conforming code.

INESC 2361 Qs Technical Reference Manual 27

Part |11
4 1QS main data structures (igs.h)

The data types, constants, macros and variables of the IQs module can be divided
in two complementary subsets:

- the one automatically generated by Lex & Yacc, scattered among lexyy.c,
ytab.h and ytab.c files (this set is exclusively related with the Lexical Analysis
and Parsing functionalities);

- the other, supporting the search and retrieval of information from the repository,
as well as the information exchange between the Visual Basic Interface Layer
and the C Layer.

Concerning the Lex & Yacc related subset, al the relevant issues were previously
discussed in 2 1QL Parsing and 3 Importing the generated codeto a WindowsDLL.

The focus will now be on the main implementation issues of the second sub-set,
whose data type definitions mainly lie at the igs.h header file.

4.1 Handling the repository information (the Set approach)

Basically, the repository search functions being part of the 1Qs API (yet to be
discussed) will try to recover Sets of objects which obey to some common properties.
Therefore, an implementation of the Set Abstract Data Type is opportune.

Such an implementation should provide for:

- Convenience - easy access and management of the the physical layout;

- Efficiency when performing basic operations over instances of the Set data type,
such as creating a set, writing on it, reading it, destroying it, etc.

These are inherently conflicting issues, inevitably introducing some implementation
compromises. The next two sections will turn on some light over these subjects.
4.1.1 Dynamic Arrays implementing Sets
Dynamic Arrays are one possible layout for the Set Abstract Data Type.

In the C programing language, implementation of the Dynamic Array
concept is straightforward?®:

15This type definition conforms to the Dynamic Array abstract concept established in 7 1QS data
structures design on [1QS-2.1].

INESC 2361 Qs Technical Reference Manual 28

typedef struct {
long index; /* index >=0 nmeans index+l objects are presently in the array */
/* index <=-1 neans array is enpty */
void *array; /* generic pointer to a nenory block containing the array */

} Dynamic_Array;

Thus, the array field is discarded whenever the i ndex fidd £ -1, that is,
the pointer is assumed no to be tight with an alocated memory block.

Instead of using the Dynani c_Array data type as the unique type for all
Sets used by 1Qs, it was decided to define as much data types as different kinds of
Sets one could need (in the 1Qs context, naturally). This was intended to increase
code readability, not only during implementation but also whenever maintenance
is needed.

The next is an extract from the igs.h file, with the type definition for all
kinds of Sets used by IQs:

/1 a set of ObjlDs
typedef struct {
long int index;
Obj | D FAR *obj i ds;
} OojID_list;

/1 a set of AQ Ds
typedef struct {
long int index;
AQ D FAR *aoi ds;
} AOD_list;

/1 a set of nanes (of attributes, facets, links, etc)
typedef struct {

long int index;

char FAR *nanes;
} Nane_list;

/1l a set of sets of names (of attributes, facets, |links, etc)
typedef struct {

long int index;

Name_|ist FAR *list;
} Nane_list_list;

/1 a set of values (of attributes, facets, links, etc);
/1 main diference between Nane_list is the conceptual distance field
typedef struct {
long int index;
int distance;
char FAR *info;
} Array_list;

INESC 2361 Qs Technical Reference Manual 29

/1 a resolved query is a pair (querytext, queryaoids) with
/'l queryaoi ds being a set of type AOD_|ist
typedef struct {
char FAR * querytext;
AO D _|ist queryaoids;
} Resol vedQuery;

/1 an History is a set of resolved queries
typedef struct {

long int index;
Resol vedQuery FAR * queri es;
} Query_list;

Dynamic Arrays implemented this way have pros and cons:

- main advantage: provide for a clean and easy implementation of the 1Qs
APl (convenience); remember that accessing the information field is the
same as accessing a dtatic array: a direct access can be made; no tricky
linked-list (or even more complex data types) access and maintenance
operations are involved;

- main disadvantage: whenever the information field needs to be
expanded, all the field must be reallocated; this can be a serious drawback if
reallocation is an often operation (poor efficiency); memory fragmentation
could also be an obstacle to reallocation: there could simply do not exist a
contiguous memory block big enough to support the reallocation, but the
sum of al the tiny free blocks scattered in memory could provide the
amount of space needed (linked-lists are a more robust implementation in
these circumstances).

Trying to avoid the overhead resulting from repeatedly reallocating a
memory block by small pieces, the IQs APl used some trivia solutions: in many
circumstances a block known to be big enough to cope with all the demands is
allocated; other times, if reallocation is really necessary, a big block is requested,
trying to delay the next reallocation.

4.1.2 A basic Set API

Given the Dynamic Array based type definitions for al kinds of Sets 1Qs
can use, one can easily set up asmall package of functions implementing the most
common set operations.

Every function should be able to work over different Sets, that is, it should
provide for abasic level of polymorphism. In C, a possible way to achieveit isto
receive parameters voi d* (or char*) typed and then, based on a specid
parameter, a set_type integer code, to make the appropriate casts. Every
function in the Set API is based in this principle, and therefore has the next basic
internal structure:

INESC 2361 Qs Technical Reference Manual 30

int aSetQperation (void FAR *one_set, void FAR *other_set, int set_type)
{

switch (set_type) {

case TYPELl : /* apply TYPEl cast to paraneters and perform operati on on them*/
br eak;

case TYPEn : /* apply TYPEn cast to paraneters and perform operation on them*/
br eak;

}

Not every set operations are defined for al of the Set types in igs.h,
because some of them never needed those operations during the 1Qs
implementation process (in fact, all operations emerged as they were needed and
to extend -if necessary- the actual functionalities to other Set types should be a
trivial task). Therefore, in the Set API description the "t ype possible values' item
will show the Set types for which the operation being described is defined (in that
context, the Set types are integer constants defined in igs.h).

The "secondary effects’ item explains what happens to the in-out
parameters when the function does not return | QS_SUCCESS.

The Set API follows:

voi d i gsCl eanSet (void FAR *set, int type)

This function inspects the i ndex field to check if is greater than -1. If so, it
deallocates the information fiedld and resets i ndex to -1. Otherwise, leaves the set
structure intact.

t ype possible values:
| Q5_OBJI DLI ST
| QS_AQ DLI ST
| QS_ARRAYLI ST
| QS_NAVMELI ST
| QS_NAVMELI STLI ST
| QS_QUERYLI ST

int iqsCopySet (void FAR *source, void FAR *destiny,
int type)

This function makes destiny a copy of source. Primitive contents of
dest i ny are aways cleaned and sour ce left intact.

INESC 2361 Qs Technical Reference Manual 31

t ype possible vaues:
. 1 Q5_AQ DLI ST
. | QS_ARRAYLI ST
. | @S_NAMELI ST

Return values:
- I @S_NOVEMORY - not enough memory; operation aborted;
- | @S_SUCCESS - operation successful.

Secondary effects:
- 1 @S_NOVEMORY - cleansdest i ny.

int iqgsSetDi fference(void FAR *a, void FAR *b,
int type)

Perform the set difference between a and b, placing the final result in a, that is,
a=a-b.

t ype possible vaues:
. 1 Q5_AQ DLI ST
. | QS_ARRAYLI ST
. | @S_NAMELI ST

Return values:
- | @S_NOVEMORY - not enough memory; operation aborted;
- | @S_SUCCESS - operation successful.

Secondary effects:
- 1 @QS_NOVEMORY - cleansa.

int igsSetlntersection(void FAR *a, void FAR *Db,
int type)

Makes a the intersection set between a and b. The intersection is made at the cost
of i gsSet Di f f er ence because aCb=a-(a-b) .

t ype possible vaues:
. 1 Q5_AQ DLI ST
. | @S_NAMELI ST

Return values:
- | @S_NOVEMORY - not enough memory; operation aborted;
- | @S_SUCCESS - operation successful.

Secondary effects:
- 1 @QS_NOVEMORY - cleansa.

INESC 2361 Qs Technical Reference Manual 32

int igsSetUnion(void FAR *a, void FAR *b, int type)
Performs a=aEDb.

t ype possible vaues:
. 1 Q5_AQ DLI ST
. | @S_NAMELI ST

Return values:
- | @S_NOVEMORY - not enough memory; operation aborted;
- | @S_SUCCESS - operation successful.

Secondary effects:
- 1 @QS_NOVEMORY - cleansa.

int igsMakeSet (void FAR *bag, void FAR *set,
int type)

Makesset acopy of bag but without repeated objects.

t ype possible vaues:

. 1 Q5_AQ DLI ST

. | QS_ARRAYLI ST

. | @S_NAMELI ST

. | @S_NAMELI STLI ST

Return values:
- | @S_NOVEMORY - not enough memory; operation aborted;
- | @S_SUCCESS - operation successful.

Secondary effects:
- 1 @QS_NOVEMORY - cleansset .

4.2 The ParserState data type

All the relevant data structures defining, at a precise moment, the state of the IQs
guerying process, are kept in a record6. Gathering that information into a unique, well
known, C structure, allows for a better control over the |Qs state because when the state
changes, one expects to see the changes reflected only in that structure. To verify the
present |Qs state it is enough to check the data contained in that structure.

16see also 7 1QS data structures design at [1QS-2.1].

INESC 2361 Qs Technical Reference Manual 33

The Par ser St at e data type implements this view and the variable i gsState isa
(unique) global instance of that type. This structure encompasses Interface related items
as well as Parser related ones. However, nor the Interface neither the Parser is
exclusively controlled by its contents:

- Visual Basic Interface control and management details do not cross the Visua
Basic/C frontier; Par ser St at e only has some fields with the contents of some
Interface objects (as list panes, for instance); it aso keeps the enable-disable
values for the majority of the buttons of the Interface. The semantic actions of
the Parser are responsible for keeping these fields with the right contents,
conforming the deterministic automata embedded in the Parser; the only thing
Visual Basic has to do when Parser Layer returns control, is to call appropriate
functions to recover the values of some critical fields and to refresh the Interface
accordingly.

- obvioudly, Lex & Y acc generated data structures controlling Lexical Analysis and
Parsing activities are left intact among the generated code; in fact, none of the
fields of ParserState controls the parsing activity, being instead a direct
reflection of the semantic actions; in that sense, the very internal state of the
(Lexer, Parser) pair is ignored; only the "externa" state, resulting from the
internal operations is kept in Par ser St at e.

Figure 5 depicts the Par ser St at e data type declaration, extracted from igs.h. The
meaning of each field follows:

. A0 D list igsqs: query state (the set of objects presently solving the query);
- AOD_list igsQsC: compounds state (a set of objects being compounds);

- Array_list igsqsv: aset of generic attribute values, or class attributes!” values, or
facet values; in Assisted Mode, these will be the contents of the interface list-
pane presenting the available values to chose from, depending on having
previousy selected a generic attribute or a class attribute or a facet, respectively
in another Iist-pane (refer O i gsACGAt tribs, i gsCLAAttri bs and i gsFACAttri bs fidlds
description);

. Name_list_list igsListList:aSetinwhich each dement is himsdf another set; to
fully understand the need for this field refer to the 1Qs API description of the
i gsCGet Cl assAttributes, iqgsGetSourcesAndLi nks and i qsCet Sour cesAndLi nksBySi nks
functions, on section 5 The IQS API.

- char FAR * igsquery: this field matches, at every moment, the part of the query
text already parsed (and thus solved); in Batch Mode, both this field and the
complete query phrase being solved will be the samel® at the end of the

17also called class attributes

18except that i gsQuery will always have 1QL tokens uppercased (this does not refer to identifiers,
however); aso, in the case of the query being derived from a non-kernel template, references to
other queries may have been converted from local to global ones (recall 6 The History at [1QS-
2.1)).

INESC 2361 Qs Technical Reference Manual 34

typedef struct {
AO D _list igsQs;
AO D_list iqgsQsC
Array_list igqsQsV
Name_|ist_list igsListList;
char FAR * iqgsQuery;
Query_list igsQueryHistory;
VBSt at e i qsVBSt at e;
Name_|ist i qsACGAttri bs;
Name_| i st i qsAOGAttri bsPrevious;
Name_list iqsFACAttri bs;
Name_| i st iqsFACAttri bsPrevious;
Name_list iqsCLAAttri bs;
Name_| i st iqsCLAAttri bsPrevious;
Name_| i st iqsSLCNanes;
Name_| i st i gsPHANanes;
Name_l i st i gsPHANanesPrevi ous;
Name_| i st i qsCRLNanes;
Name_l i st i qsCRLNanesPrevi ous;
Name_l i st i qsLNKNanes;

bool
bool
bool
bool
bool
bool
bool
bool

AOGExpl or ed;

FACExpl or ed;

CLAExp! or ed;

SLCExpl or ed;

PHAExpl or ed;

| sConmpoundPr essed;
CRLExp! or ed;

Bel ongToConpoundPr essed;

AO D _list iqsRM
BOOL i gsBat chOn;
I ong int iqgsNextLocal H ndex;

} ParserState;

Figure 5 -- the Par ser St at e data type declaration

resolution process; also, a the end of the query solving, in Assisted Mode,
igsquery Will contain the submitted query phrase after redundancy and
incompletenesst®have been purged; so, whatever mode of operation considered,
an internal synthesized query will be kept a igsquery and, in the case of a
successful resolution, it will be added to the History, together with the objects
which were the query solution, contained by thei qsgs field;

Query_list igsQueryHi story: this field stands for the History of the present 1Qs
session; refer to section 4.2.1 for a complete description of all the related
implementation details,

vBstate igsvBst ate: thisfield keeps the enable/disable state of all the Visua Basic
layer buttons (as well as some list boxes and menus) under the control of

Lrecall 2.4.1 Aided Mode | QL sub-grammar issues.

INESC 2361 Qs Technical Reference Manual 35

the deterministic automata of the IQL grammar; to get a more detailed
description of these field, refer to section 4.2.2;

- Nane_list i gsACGAttri bs, Nane_li st i gsFACAttribs, Name_list i gsCLAAttri bs,
Name_l|ist iqgsSLCNanes, Nane_list igsPHANanmes, Nane_list iqgsCRLNanes, Nane_li st
i gsLNkNanes: these fields are the sets of generic attributes, facets, class attributes,
software life cycles, phases, characteristic relations and links, respectively,
available to be chosen from a dedicated list-pane2;

- bool AOGExpl ored, bool FACExplored, bool CLAExplored, bool SLCExplored, bool
PHAExpl ored, bool CRLExpl ored: these flags are enabled when the refinement by
generic attributes, facets, class attributes, software life cycles, phases or
characteristic relations, respectively, is found to be finished; in this situation,
preventing further attempts to refine by these paths is done by inspecting the

respective flags;

- bool |sConpoundPressed, bool Bel ongToConpoundPressed. these are flags enabled
whenever the respective buttons are pressed; when that happens, those buttons
will not ever be allowed to be enabled again because the associated action can be
performed only once.

- Aa D list igsrRM the only purpose of thisfield is to receive a copy of atemporary
or fina query solution, kept by igsgs, in order to let appropriate functions?!
handle those results and submitting them to the Result Manager;

- BoOL i gsBat chon: thisis aflag activated when 1Qs enters the Batch Mode; mainly,
this flag alows for flow control inside the semantic actions shared code,
preventing Assisted Maode specific code to be executed.

- long int igsNextLocal H ndex: this field keeps track of the next available local
index during some History operations; his usefulness is fully explained at section
421

Having specific fields to keep objects that are compounds (i gsgsc) or to be used by
Result Manager related operations (i gsrv), does not necessarily mean that during every
query resolution, their contents are meaningful. That depends on the Template format of
the query presently being solved. This also applies to the flags aacexpl or ed, FACEXp! or ed,
CLAExpI or ed, SLCExpl or ed, PHAExpl or ed, CRLExpl or ed, | sConpoundPr essed and
Bel ongToConpoundPr essed, mntlally related with visual features used onIy at some specific
Templates.

4.2.1 Implementation details of the History

The C data types implementing the History abstract definition provided at
chapter 6 of [1QS-2.1] are?2:

20see also section 4.2.2 The VBState data type.
21see section 7 The 1 QS Visual Basic related API.
22spe also section 4.1.1 Dynamic Arrays implementing Sets.

INESC 2361 Qs Technical Reference Manual 36

/1 a solved query is a pair (querytext, queryaoids) with
/'l queryaoi ds being a set of type AOD._|i st
typedef struct {
char FAR * querytext;
AO D _|ist queryaoids;
} Resol vedQuery;

/1 an History is a set of resolved queries
typedef struct {

long int index;

Resol vedQuery FAR * queri es;
} Query_list;

As section 4.1.1 dready referred, these data types are extensions to the
Dynami c_Array basic Set data type. A|SO, as 4.2 ShOWGd, the fidld i gsQueryHi story
of the par ser st at e Structure implements the 1Qs History.

One important issue concerning the management of the present 1Qs History
is the one related with adding to it previously solved queries, kept in a saved
History. This possibility has been envisioned at the chapter 6 of [1QS-2.1], which
even described what had to be done in order to have the local references made by
non-kernel queries, at the imported History, to become global ones, a the
global23 History.

On the basis of that intended behaviour, the next three macros are used to
maintain the local and global references aside:

- #define iqgsCet Next d obal H ndex() (iqgsState.iqsQueryHistory.index+1)

This macro retrieves the next valid global index (or reference), that is, the
next "vacancy" on the History. Every time a query is successfully solved, it
is added to the History, and his text will have been prefixed with #nuveer
where nuvser Will be the next global index vaue, as given by the macro.
This is true even for those queries coming from an imported History (his
text aready contained a loca prefix, which however will only be used in
local references).

- #define i gsSet Next Local H ndex(i ndex) iqgsState.igsNextLocal H ndex=i ndex

This macro is called to set thei gsNext Local HI ndex fidld of i gsState 1O zero,
every time a batch resolution is started. The Batch Mode aways defines a
local context, no matter the state of the globa History and thus needs the
proper index prefix on every query phrase. On the opposite side, the
Assisted Mode always operates, by default, on a global context because it
does not require the users to provide for an index to the query being
interactively solved, instead choosing the next global valid one.

Z3that is, the History resulting from joining the loaded and the present one.

INESC 2361 Qs Technical Reference Manual 37

- #define i qsGet Next Local H ndex() (igsState.iqgsNextLocal H ndex)

In Batch Mode, every time a query phrase recognition starts, the mandatory
index prefix24 is checked to see if it matches the one expected in that local
context, given by this macro.

4.2.2 The VBState data type

In Assisted Mode, besides providing for the contents of the various Visual
Basic objects presented at the interface layer, the underlying C layer aso must
enable and disable them. In fact, that is how the C code implementing the QL

grammar parsing mechanism, manages to control, in a deterministic way, the

interface.

Figure 6 presents the C data type definition of the vestate Structure,
containing the necessary fields to control al the relevant interface objects on
Assisted Mode. The meaning of each field is aso explained.

BOOL
BOOL
BOOL
BOOL
BOOL

BOOL

BOOL
BOOL
BOOL
BOOL
BOOL

BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL

typedef struct {

out O asses;

cndGEN;
cndFAC
cndATT;

| st Attr Name

| st AttrVal ue;

/* enabl e/ di sabl e the class hierarchy tree */
/* enabl e/ di sabl e the generic attributes button */
/* enabl e/ di sabl e the facets button */
/* enabl e/ di sable the class attributes button */

/* enabl e/ di sabl e the |ist-pane showi ng generic */
/* attributes, facets, class attributes, software*/
/* life cycles, phases, characteristic relations,*/
/* and |ink nanes */
/* enabl e/ di sabl e the |ist-pane showi ng generic */
/* attributes, facets or class attributes values */

cmdCRL; /* enabl e/ di sabl e the characteristic relations button */

cmdl SC
cmdBLC
cmd CHECK
cnd ABORT;

cmdTl;
cmdT2;
cmdT3;
cmdT4;
cmdT5;
cndT6;
cmdT7;
cndT8;

| st History;

cmdSLC
cmd PHA
spnFAC
MuHST;
muDSP;

} VBState;

/*

/* enabl e/ di sabl e the is-conpound button */
/* enabl e/ di sabl e the bel ong-to-conpound button */
/* enabl e/ di sabl e the check button */
/* enabl e/ di sabl e the abort button */
/* the next eight buttons enabl e/disable the */

/* access to a specific tenplate */

/* enabl e/ di sabl e access to history visualization*/
/* enabl e/ di sabl e the software |life cycles button*/

/* enabl e/ di sabl e the phases button */
enabl e/ di sabl e the conceptual distance scrollbar */
/* enabl e/ di sbal e access to the History nenu */
/* enabl e/ di sbal e access to the Display nenu */

Figure 6 - The VBState data type

240f the format #NUMBER.

INESC 2361

IQs Technical Reference Manual

38

Note that the enabling and disabling of the vestat e items takes place at the
body of the semantic actions code, because being embedded in the IQL grammar,
these ones are context sensitive and thus know exactly which visual items to
enable or to disable, at any step of the query recognition process.

5 The IQS API (igs.c)

Until now, we have refered to the |Qs API as the set of functions callable from the
semantic actions code and exclusively concerned with retrieving objects from the
repository, by invoking the appropriate functionalities of the SOURLIB software layer,
during query resolution.

However, in practical terms, the C code file implementing the 1Qs AP, igs.c,
includes aso other sets of functions, some of them offering services to the I1Qs AP
functions, and others making possible to the objects collected from the repository by the
Qs API to access the interface upper layer and even to control its behaviour. These
other functionalities group themselves into three distinct small sets, inside theigs.c file:

- abasic Set AP, dready presented at 4.1.2;

. anAuxiliary 1Qs AP, to be discussed at 5.1;

- an Qs Visua Basic related AP, whose description is postponed until chapter 7;

The following is a description of the 1Qs AP, similar to the one provided at
Appendix B of [1QS-2.1]. Note the "Secondary effects’ field, which explains what

happens to the in-out parameters when the function returns some specific values
(generally al but | QS_SUCCESS?).

int igsGetH erarchyAocids(AO D |ist FAR *aoid_list,
char FAR *cl ass)

Given acl ass name, thisfunction putsinaoi d_I i st al the Aoibs of the class
sub-hierarchy starting at cl ass. Based on er aGet Qbj calls for each class bellow the
one provided, i gsGet Hi er archyAoi ds will remove, from aoid_|ist, the
systemobject TUTTO (used by Comparator-Modifier as a upper-bound to close the
lattice - see [CM-1.4 1993)), if found during the search.

Return values:

- | @S_PARAMERR - bad parameters; operation aborted;

- | @S_NOVEMORY - not enough memory; operation aborted;

- | @S_ERROR - internal or unknown error; operation aborted;

- 1 @S_NOTFOUND - no objects found for the selected class hierarchy;
- | @S_SUCCESS - operation successful.

25as already defined at 4.1.2 A basic Set API.

INESC 2361 Qs Technical Reference Manual 39

Secondary effects:
. 1 QS_PARAMERR, | QS _NOVEMORY, | @S _ERROR, | @S_NOTFOUND: cleans
aoid |ist

int igsGet ACGAttribs (AOD list FAR *aoid_|ist,
Nane_ |ist FAR *aog attrs)

i qsGet ACGAL t ri bs will search the generic attributes for whom the objects in
aoi d_I| i st defineavaue, that is, for each object inaoi d_| i st, the "AOG' classis
inspected via er aGet Obj ect in order to check if each generic attribute has a well-
defined non-empty value. As soon as a value has been found for al the generic attributes,
the search is stopped (this could happen at the very first object of aoi d_| i st if this
object defines a non-empty value for all of the generic attributes). The defined generic
attributes (except "AQl D") arereturned viathe in/out parameter aog_attrs.

Return values:

- | @S_PARANMERR - bad parameters; operation aborted;

- | @S_NOVEMORY - not enough memory; operation aborted;

- | @S_ERROR - internal or unknown error; operation aborted;

-1 @S_NOTFOUND - no generic attributes defined (except "AQ D");
- | @S_SUCCESS - operation successful.

Secondary effects:
. 1 QS_PARAMERR, | QS _NOVEMORY, | @S _ERROR, | @S_NOTFOUND: cleans
aog_attrs.

int iqgsGet AOGval ues(AO D |ist FAR *aoid |ist,
Array |ist FAR *attr_val ues)

For each object in aoi d_Ii st, i qsGet AOGVal ues inspects the "ACG' class
via eraGet (bj ect, checking for the value the generic attribute passed in
attr_val ues->i nfo assumes. The goa is to make attr_val ues the set of
those values.

Return values:

- | @S_PARANMERR - bad parameters; operation aborted;

- I @S_NOVEMORY - not enough memory; operation aborted;

- | @S_ERROR - internal or unknown error; operation aborted;

- | @QS_NOTFOUND - generic attribute at t r _val ues- >i nf o unknown;
- | @QS_NOVALUES - generic attributeat t r _val ues- >i nf o undefined;
- | @S_SUCCESS - operation successful.

INESC 2361 Qs Technical Reference Manual 40

Secondary effects:
| QS_PARAMERR, | QS_NOVEMORY, | QS _ERROR, | QS_NOTFOUND,
| @QS_NOVALUES: cleansat tr _val ues.

int iqgsGetFacets(AO D Ilist FAR *aoid I|ist,
Nane_ |ist FAR *facets)

i gsGet Facet s will search the facets for whom the objects in aoi d_| i st
define a value, that is, for each object inaoi d_| i st, the "FACETS" class is inspected
viaer aGet Obj ect inorder to check if each facet has a well-defined non-empty value.
As soon as a vaue has been found for al the facets, the search is stopped (this could
happen at the very first object of aoi d_I i st if this object defines a non-empty value
for al of the facets). The defined facets are returned viathe in/out parameter f acet s.

Return values:

- | @S_PARANMERR - bad parameters; operation aborted;

- | @S_NOVEMORY - not enough memory; operation aborted;
- | @S_ERROR - internal or unknown error; operation aborted;
- | @QS_NOTFOUND - no facets defined;

- | @S_SUCCESS - operation successful.

Secondary effects:
. 1 QS_PARAMVERR, | QS _NOVEMORY, | @S _ERROR, | @S_NOTFOUND: cleans
facets.

i nt iqgsGetFacetsVal ues(AO D |ist FAR *aoid_list,
Array |ist FAR *facet _val ues)

For each object in aoid_list, igsGetFacetsVal ues inspects the
"FACETS" class via eraCGet Obj ect, checking for the value the facet in
facet val ues->i nf o assumes. The goal is to make f acet _val ues the set of
those values.

Return values:

- | @S_PARANMERR - bad parameters; operation aborted;

- I @S_NOVEMORY - not enough memory; operation aborted;

- | @S_ERROR - internal or unknown error; operation aborted;

- | @QS_NOTFOUND - facet f acet _val ues- >i nf o unknown;
- | @S_NOVALUES - facet f acet _val ues- >i nf o undefined;
- | @S_SUCCESS - operation successful;

Secondary effects:

| QS_PARAMERR, | QS_NOVEMORY, | QS _ERROR, | QS_NOTFOUND,
| @S_NOVALUES: cleansf acet _val ues.

INESC 2361 Qs Technical Reference Manual 41

int iqsGetd assAttributes(AOD |ist FAR *aoid_|ist,
Nane list _list FAR *class_atts_|ist)

i gsGet C assAttri butes will search the class attributes for whom the
objects in aoi d_I| i st define a value, that is, for each object in aoi d_Ii st, the
"ACG' class is inspected via er aGet Obj ect in order to retrieve the value of the
"CLASS" generic attribute; the class whose name is given by that value is then inspected,
once again using er aGet Obj ect, and all its attributes, having a well-defined non-
empty value, are retrieved into a set of names; this set is object specific and so this task
must always be done for every object of aoi d_Ii st . Since a set of class attributes is
eventually needed for each object, the infout parameter, cl ass_atts _|ist,isaset
of set of names.

Return values:

- | @S_PARANMERR - bad parameters; operation aborted;

- | @S_NOVEMORY - not enough memory; operation aborted;

- | @S_ERROR - internal or unknown error; operation aborted;
- 1 @S_NOTFOUND - no class attributes defined;

- | @S_SUCCESS - operation successful;

Secondary effects:
. 1 Q5_PARAMERR, | Q5_NOVEMORY, | @S_ERROR, | @8_NOTFOUND: cleans
class _atts |ist.

int iqgsGetAttribsValues(AOD |ist FAR *aoid_|ist,
Array |ist FAR *attr_val ues)

For each object inaoi d_Iist,iqsGet Attri bsVal ues inspects the "ACG'
classviaer aGet bj ect, checking for the value of the "CLASS" generic attribute; the
class whose name is given by that value is then inspected, once again using
er aCet Qbj ect , in order to retrieve the value of the class attribute originally contained
inattr_val ues->i nfo. Thegoal isto make attr _val ues the set of the values
obtained that way.

Return values:

- | @S_PARANMERR - bad parameters; operation aborted;

- 1 @S_NOVEMORY - not enough memory; operation aborted;

- | @S_ERROR - internal or unknown error; operation aborted;

- | @QS_NOTFOUND - classattributeat t r _val ues- >i nf o unknown;
- | @QS_NOVALUES - classattributeat t r _val ues- >i nf o undefined;
- | @S_SUCCESS - operation successful;

Secondary effects:

| QS_PARAMERR, | QS_NOVEMORY, | QS _ERROR, | QS_NOTFOUND,
| @QS_NOVALUES: cleansat tr _val ues.

INESC 2361 Qs Technical Reference Manual 42

int igsGetSLCs(AQ D list FAR *aoid_Iist,
Nane_|ist FAR *slcs)

For each object in aoi d_list, i qsGet SLCs inspects the "PRJ" class via
er aGet Obj ect, checking for a well-defined non-empty value of the "SLC" (Software
Life Cycle) attribute. At the end, sl cs will contain the Software Life Cycles retrieved
that way.

Return values:

- | @S_PARANMERR - bad parameters; operation aborted;

- 1 @S_NOVEMORY - not enough memory; operation aborted;
- | @S_ERROR - internal or unknown error; operation aborted;
- | @S_NOTFQOUND - no software life cycles defined;

- | @S_SUCCESS - operation successful;

Secondary effects:
| QS_PARAMERR, | QS_NOMEMORY, | QS _ERROR, | QS _NOTFOUND:
cleanssl cs.

int igsGetPHAS(AO D |list FAR *aoid_list,
Nane_|ist FAR *phas,
Nane_|ist FAR *slcs)

Firstly, i gsGet SLCs iscalledin order to get into sl cs the Software Life Cycles
of the aoi d_I i st objects. After that, i qsGet PHAsBySLC will check, for each
Software Life Cycle, his specific Software Life Cycle Phases. At the end, phas will
contain the Software Life Cycles Phases retrieved that way.

Return values:

- | @S_PARANMERR - bad parameters; operation aborted;

- I @S_NOVEMORY - not enough memory; operation aborted;

- | @S_ERROR - internal or unknown error; operation aborted;

- | @S_NOTFOUND - no software life cycles or no phases defined;
- | @S_SUCCESS - operation successful;

Secondary effects:
| QS_PARAMERR, | QS_NOMEMORY, | QS _ERROR, | QS _NOTFOUND:
cleansphas and sl cs.

INESC 2361 Qs Technical Reference Manual 43

int igsGet PHASBySLC(Nane_|ist FAR *phas_Ii st,
char FAR *sl c)

Given a Software Life Cycle sl ¢, conGet SLCPHA is invoked in order to
retrieve al the Software Life Cycle Phases of that Software Life Cycle into
phas_Ii st.

Return values:

- | @S_PARANMERR - bad parameters; operation aborted;

- | @S_NOVEMORY - not enough memory; operation aborted;

- | @S_ERROR - internal or unknown error; operation aborted;

- | @S_NOTFOUND - no phases found for the software life cycle sl c;
- | @S_SUCCESS - operation successful;

Secondary effects:

. | Q5_PARAMERR, | QS_NOVEMORY, | @8 _ERROR, | QS_NOTFOUND: cleans
phas_|i st;

int igsGetAoi dsBySLC(AO D |ist FAR *aoid_list,
char FAR *sl c)

For each objectinaoi d_| i st, i qsGet Aoi dsBy SLC inspects the "PRJ" class
via er aGet Obj ect, checking for the value of the "SLC' (Software Life Cycle)
attribute. At theend, aoi d_| i st will keep only the objects for whom the value of the
"SLC" attribute equalsthe sl ¢ parameter.

Return values:

- | @S_PARANMERR - bad parameters; operation aborted;

- | @S_NQOVEMORY - not enough memory; operation aborted,;

- | @S_ERROR - internal or unknown error; operation aborted;

- | @S_NOAO DSSLCS - no objects found with any software life cycle;
- | @S_NOAQO DSSLC - no abjects found with sl c;

- | @S_SUCCESS - operation successful;

Secondary effects:

- | @S_PARAMERR, | QS_NOVEMORY, | @S_ERROR, | QS _NOAQ DSSLCS,
| @QS_NQAO DSSLC: cleansaoi d_|Ii st.

INESC 2361 Qs Technical Reference Manual 44

int igsGet SLCsByPHA(Nane_|ist FAR *slcs_list,
char FAR *pha)

For each Software Life Cycle in slcs_list, cdls i gsGet PHASBySLC
retrieving all its Phases. Then, it checks if pha is among those Phases. At the end,
sl cs_li st will keep only those Software Life Cycle containing pha.

Return values:

- | @S_PARANMERR - bad parameters; operation aborted;

- | @S_NOVEMORY - not enough memory; operation aborted;
- | @S_ERROR - internal or unknown error; operation aborted;
- | @S_NOTFQOUND - no software life cycles found with pha;

- | @S_SUCCESS - operation successful;

Secondary effects:

. | @_PARAMERR, | QS_NOVEMORY, | QS_ERROR, | QS_NOTFOUND: cleans
slcs_|ist;

int igsGetCompounds(AO D |ist FAR *aoid_Ilist)

For each object in aoi d_1i st, i gsGet Conpounds cals conGet Mor once,
verifying if it returns A_ SUCCESS, in wich case the object is assumed to be a compound
object. At theend, aoi d_| i st will keep only those objects which passed the previous
test, that is, those objects being compounds.

Return values:

- | @S_PARAMERR - bad parameters; operation aborted;

- I @S_NOVEMORY - not enough memory; operation aborted;
- | @S_ERROR - internal or unknown error; operation aborted;
- 1 @S_NOTFOUND - no compounds found;

- | @S_SUCCESS - operation successful;

Secondary effects:
- 1 QS_NOVEMORY, | @S ERROR, | @QS_NOTFOUND: cleansaoi d_1i st .

int igsGetCaractRel (AO D |ist FAR *aoid_list,
Name_|ist FAR *crls)

For each object inaoi d_| i st, i qsGet Caract Rel calsconGet Mor Lnk in

order to retrieve a set of Obj | Ds, each one standing for a Characteristic Relation.
conCet Lnk will then allow for each one of those Obj | Ds to be maped into a string:

INESC 2361 Qs Technical Reference Manual 45

the name of the Characteristic Relation. In the end, crl s will contain the set of
Characteristic Relation names retrieved as described.

Return values:

- | @S_PARANMERR - bad parameters; operation aborted;

- I @S_NOVEMORY - not enough memory; operation aborted;

- | @S_ERROR - internal or unknown error; operation aborted;
- | @S_NOTFQOUND - no characteristic relations found,

- | @S_SUCCESS - operation successful;

Secondary effects:
. 1 QS_PARAMERR, | QS _NOVEMORY, | @S _ERROR, | @S_NOTFOUND: cleans
crls.

int iqgsGetd ustersByCaractRel (
AO D list FAR *aoid_list,
char FAR *crl)

For each object in aoid |ist, iqsGetd ustersByCaractRel «cdls
conCet Mor Lnk in order to retrieve a set of Qbj | Ds, each one standing for a
Characteristic Relation. conGet Lnk will then allow for each one of those Qbj | Ds to
be maped into the name of the respective Characteristic Relation. If the parameter cr |
matches at least one of these Characteristic Relations, then the object currently under
survey is considered to be a Cluster (being cr| one of his Characteristic Relation). In
theend, aoi d_I i st will keep only the objects being Clusters.

Return values:

- | @S_PARANMERR - bad parameters; operation aborted;

- I @S_NOVEMORY - not enough memory; operation aborted;

- | @S_ERROR - internal or unknown error; operation aborted;

- 1 @QS_NOTFQOUND - no clusters found with any Characteristic Relation;

- | @S_NOVALUES - no clusters found with the Characteristic Relationcr | ;
- | @S_SUCCESS - operation successful;

Secondary effects:
| QS_PARAMERR, | QS_NOVEMORY, | QS ERROR, | QS_NOTFOUND,
| @QS_NOVALUES: cleansaoi d_| i st.

int igsGetC aoByMenber (AO D |ist FAR *aoid_list)
The objects that aggregate the ones in aoi d_| i st, are retrieved and placed

there. conGet Mor is the low-level functionality on which i gsGet Cl aoByMenber
mainly relies for that purpose.

INESC 2361 Qs Technical Reference Manual 46

Return values:

- | @S_PARANMERR - bad parameters; operation aborted;

- | @S_NOVEMORY - not enough memory; operation aborted;
- | @S_ERROCR - internal or uknown error; operation aborted;
- 1 @S_NOTFQOUND - no compounds found;

- | @S_SUCCESS - operation successful.

Secondary effects:
- 1 QS_NOVEMORY, | @S ERROR, | @QS_NOTFOUND: cleansaoi d_1i st .

int igsGet MenberByd ao(AO D |ist FAR *aoid_list)

For each object in aoi d_Ii st, i qsGet Menber Byd ao cdls conGet Mor,
retrieving al his members. At the end, aoi d_| i st will be the set of al the objects
contained by the onesinitialy there.

Return values:

- | @S_PARANMERR - bad parameters; operation aborted;

- | @S_NOVEMORY - not enough memory; operation aborted;
- | @S_ERROR - internal or unknown error; operation aborted;
- 1 @S_NOTFOUND - no compounds found;

- | @S_SUCCESS - operation successful;

Secondary effects:
- 1 @QS_NOVEMORY, | QS_ERROR, | @S_NOTFOUND: cleansaoi d_| i st.

int iqgsGetSources(AOD list FAR *aoid_|ist)

For each object inaoi d_Ii st, i gsGet Sour ces cals conGet Lnk, in order
to check if the current object is source of some link. At the end, aoi d_| i st will keep
only the source objects.

Return values:

- | @S_PARANMERR - bad parameters; operation aborted;

- | @S_NOVEMORY - not enough memory; operation aborted;
- | @S_ERROR - internal or unknown error; operation aborted;
- | @S_NOTFOUND - no sources found;

- | @S_SUCCESS - operation successful;

Secondary effects:
- 1 QS_NOVEMORY, | @S ERROR, | @QS_NOTFOUND: cleansaoi d_1i st .

i nt iqgsGet SourcesAndLi nks(AO D |ist FAR *aoid_|ist

INESC 2361 Qs Technical Reference Manual 47

Nane list _list FAR *links_set |ist)

For each object in aoid_list, iqgsCetSourcesAndLi nks «cdls
conGet Lnk, in order to check if the current object is source of alink. If so, the set of
all the outgoing links from that object is retrieved. At the end, aoi d_I i st will keep
only the source objects and | i nks_set |i st will contain the respective sets of
outgoing links.

Return values:

- | @S_PARANMERR - bad parameters; operation aborted;

- | @S_NOVEMORY - not enough memory; operation aborted;

- | @S_ERROR - internal or unknown error; operation aborted;
- | @S_NOTFOUND - no sources found;

- | @S_SUCCESS - operation successful;

Secondary effects:

- | @5_PARAMERR: cleans| i nks_set | i st;

- 1 @S_NOVEMORY, | QS ERROR, | QS NOTFQUND: cleans aoid_|ist and
links_set |ist.

i nt i qsGet Sour cesByLi nkAndSi nks(
AO D list FAR *aoid_list,
char FAR *li nk,
AOQ D |ist FAR *sinks)

For each object inaoi d_Ii st, i gsGet Sour ces cals conGet Lnk, in order
to check if the current object is source of | i nk to at least one sink in si nks. At the
end, aoi d_I i st will keep only the objects founded to be sources in this way.

Return values:

- | @S_PARANMERR - bad parameters; operation aborted;

- | @S_NOVEMORY - not enough memory; operation aborted;

- | @S_ERROR - internal or unknown error; operation aborted;
- | @S_NOTFOUND - no sources found;

- | @S_SUCCESS - operation successful;

Secondary effects:
. 1 QS_PARAMERR, | QS _NOVEMORY, | @S_ERROR, | @S_NOTFOUND: cleans
aoi d_|ist andsinks.

i nt i gsGet Sour cesAndLi nksBySi nks(
AO D list FAR *aoid_list,
Nane list _list FAR *links_set |ist,
AO D |ist FAR *sinks)

INESC 2361 Qs Technical Reference Manual 48

For each object inaoi d_Ii st, i gsGet Sour ces cals conGet Lnk, in order
to check if the current object is source of some link to some sink insi nks. If so, the set
of al the outgoing links from that object to al the si nks is retrieved. At the end,
aoi d_I i st will keep only the source objectsand | i nks_set | i st will contain the
respective sets of outgoing links to at least one of the si nks.

Return values:

- | @S_PARANMERR - bad parameters; operation aborted;

- | @S_NOVEMORY - not enough memory; operation aborted;

- | @S_ERROR - internal or unknown error; operation aborted;

- | @S_NOTFOUND - no sources found;

- | @S_SUCCESS - operation successful;

Secondary effects:
. 1 QS_PARAMERR, | QS _NOVEMORY, | @S _ERROR, | @S_NOTFOUND: cleans
aoi d_|ist andsinks.

5.1 An Auxiliary 1QS API

This section describes auxiliary functions developed to handle some low-level
implementation aspects (otherwise, 1Qs ApI functions would have, internally, to deal with
them), namely:

- safe memory reallocation (mostly done to expand sets of objects);

- token retrieving from token strings based on the separator ' , ' .

These details should be hided from the magjority of the IQs Arl functions to take
care of them. Besides encapsulation, having functions to perform very common low-level

tasks allowed a faster implementation of the IQs API.
The next is a description of the Auxiliary 1Qs API:

int igsFrealloc (void FAR **nenptr, size_t nensize,
int ptrtype)

This function reallocates a memory block. It receives the address of avoi d FAR
* pointer, - menpt r -, the new intended size (in bytes) of the memory block tight with
menptr, - nmensi ze -, andaninteger - pt rt ype -, coding the pointer type in order
to make appropriate internal casts. i gsFr eal | oc isbased onacall to

void FAR * frealloc (void FAR * nenbl ock, size_ t size)

of the mal | oc. h, Microsoft Visual C++ 1.5 library, and intends to avoid the loosing of
the pointer in realocation, if _freall oc returns NULL and a backup of the previous
contents of the pointer has not been made.

ptrtype possible values:

INESC 2361 Qs Technical Reference Manual 49

| QS_AO DFARPTR
| QS_CHARFARPTR

| QS_NAMELI STFARPTR

| Q5_OBJI DFARPTR

| QS_RESOLVEDQUERYFARPTR

Return values:

| @S_NOVEMORY - not enough memory; operation aborted (*menpt r remains
intact);

| @QS_SUCCESS - operation successful (*menpt r now points to the reallocated
memory block);

char FAR * igsStrtok (char FAR *str)

Enhance the functionality of the f st rt ok function of the st r i ng. h Microsoft
Visual C++ 1.5 library:

- returns, one by one, the tokens in str even if it contains empty tokens;
remember that _f st rt ok would ssimple ignore them; however, only the character
', " (coma) is considered to be atoken delimiter;

- does not destroy the contents of st r because it operates on an interna copy,
while _f st rt ok overwrites the token delimiter with a '\ 0" character every
time it finds a token.

i qsSt rt ok followsthe same invocation policy as_fst r t ok: at thefirst call, the
st r parameter must not be a NULL pointer, and the first token found is returned; next
cals will have to be made precisaly with a NULL pointer in order to retrieve the rest of
the tokens; the function returns tokens, one by one, on successive calls; once it does not
find more tokens it will always return NULL.

Note that an empty token returned is a (char FAR *)"", that is, an empty
string. Thisisnot thesameasa (char FAR *) NULL which means that the function
cannot find more tokens in the string. For instance, the strings " " (empty string), "."
and "hello,” would make i gqs St rt ok to return, respectively, " " and NULL, "" and
"" and NULL, "hello" and"" and NULL.

i nt igsCheckWordl nLi st(char FAR *word, char FAR *Ii st
,int FAR *index, int node)

This function is based on callsto i qs St rt ok, providing different functionalities,
accordingly with the parameter node. It has been specifically implemented to extend
i gsStrt ok capabilities in handling token retrieving over strings where the delimiter is
the character ' , ' (coma).

node possible values:

INESC 2361 Qs Technical Reference Manual 50

- | @QS_WORD: get thei ndexthtokenin! i st and return it viawor d;

- | QS_STARTI NDEX: search for the first occurrence of word inli st and get
its relative pogtion into i ndex; if word does not exist, then, after
i gsCheckWor dl nLi st returns, the total number of tokens contained within
I'i st (including empty tokens-"" -) will be equal toi ndex+1;

- | @S_NEXTI NDEX: like| QS_STARTI NDEX, but used to retrieve the indexes of
wor d beyond the first occurrencein | i st ; it can only be used after first invoking
i gsCheckWor dl nLi st withthel QS_STARTI NDEX mode.

Return values:

- | @S_PARANMERR - bad parameters; operation aborted;
- | @S_NOTFOUND - no moretokensfound at | i st ;

- | @S_SUCCESS - operation successful;

int igsGetAttrVal ue(char FAR *nanes, char FAR *nane,
char FAR *val ues, char FAR *val ue)

Thisfunction is based on callstoi gsCheckWor dl nLi st and it searches for the
index26 of nane in nanmes and then for the correspondent val ue in val ues (the
correspondent val ue is the one with a relative position within val ues equal to the
relative position of name in nanes).i qsCGet At t r Val ue isamost exclusively used
to make the "projection” of the At t r Narne field (of the er aAt t r Name ERA structure
data type), over the correspondent At t r Val ue list, in order to get a specific pair
(name, value). If the retrieved val ue is a whitespace character string, it is converted
into an empty string.

Return values:

- | @S_PARANMERR - bad parameters; operation aborted;

- | @S_NOTFOUND - nane or val ue could not be found in nanes or val ues,
respectively;

- | @S_SUCCESS - operation successful.

6 The IQS Semantic Actions API (actions.c)

This chapter presents the C functions implementing the Semantic Actions in the
igs.y IQL grammar description. Besides the Semantic Actions code, the file actions.c
also contains a set of Semantic Actions related Auxiliary functions, which will be
described at 6.1.

Remember that the Semantic Actions will be the primary functions responsible for
guery resolution and indirect interface control. They are based on callsto the IQgs API (in
charge with getting from the SourLIB functionalities the desired repository objects) as
well asto their auxiliary functions.

260r relative position.

INESC 2361 Qs Technical Reference Manual 51

All Semantic Actions are voi d functions, using aglobal i nt variable, r | Q527 to
"return” their results. This has to do with the need of testing the result from the
yypar se parsing function independently of the result of the semantic action just
executed. Therefore, it was decided to keep the return value of yypar se to reflect the
success or failure of the lexical analysis and parsing activities, and to rely on r 1 QS to
know how the semantic actions terminated. This avoids changing the generated code
which implements yypar se, in order to introduce r et ur n(r | QS) statements at the
proper places?.

Therefore, instead of having a topic named "Return values.", the 1Qs Semantic
Actions APl description that follows, uses, aternatively the "Return values (r1QS):"
item. Also, the behaviour of a certain function may vary dightly from Assisted Mode to
Batch Mode and so two descriptions are given, one for each operation mode2°. Note that
in the Assisted Mode description, the mentioned tokens of a query phrase enter that
phrase as a result of an interface event but in Batch Mode a complete textual description
(containing those tokens) is assumed to be provided at once.

voi d i gsSAcheck()

Assisted Mode behaviour:

This function is called whenever the query phrase recognition is considered to be
terminated. In Assisted Mode this will happen only explicitly by pressing the CHECK
interface button and thus introducing the token CHECK into the query phrase.
i gsSAauxAddQuer yToHi story is invoked in order to add the query phrase
(presently ini qsSt at e. i gsQuery) tothe History. However, before that, in the case
of a query phrase of the TEMPLATE4 variant, i gsSAcheck must check first for the
AOQOIDs previoudly retrieved (kept ini qsSt at e. i qsQS) and belonging to the CLAOs
being characterized (and kept in i qsSt at e. i qsQSC); this will involve caling the
functionsi qsGet Menber ByCl ao andi qsSet | nt er secti on.

Batch Mode behaviour:

In Batch Mode, every time a complete query phrase from the batch is recognized,
i gsSAcheck is called. The log file of the batch session will be appended with the
results of the query just solved and VBi qsReset Par ser will be invoked before
processing the next query.

Return values (r | QS):

- | @S_NOVEMORY - not enough memory; operation aborted;
- | @S_ERROR - internal or unknown error; operation aborted;
- | @S_SUCCESS - operation successful.

2Tdeclared at igs.h.

28spe also 7 The |QS Visual Basic related API.

29remember that the semantic actions are shared between these two modes, and necessarily
certain details will be handled differently inside the same semantic action implementation code.

INESC 2361 Qs Technical Reference Manual 52

voi d i gsSAabort ()

Assisted Mode behaviour:

This function is cdlable by pressing the ABORT button (and thus making the
ABORT token to enter the query phrase). VBi qsReset Par ser isinvoked in order to
abort the query and prepare for the next query solving.

Batch Mode behaviour:
Not callable because a batch resolution terminates only when the last query has
been solved or an error occurred.

Return values (r | QS):
- | @S_SUCCESS - operation (always) successful.

voi d bat chl gsSAcheckl ndex(i nt i ndex)

Assisted Mode behaviour:
Not callable. In Assisted Mode the index of a query is automatically associated
with that query as soon as the query text begins to be synthesized.

Batch Mode behaviour:

bat chl gsSAcheckl ndex is caled every time a token of the format #i ndex
(where i ndex is an integer) is recognized during a batch solving of a query of any
Template variant. This function checks if the parameter i ndex matches the next
expected History index in the local context of the present Batch session.

Return values (r | QS):

-1 @S_BATCHI NDEXNOTVALI D - unexpected index; operation aborted; only in
Batch Mode;

- | @S_SUCCESS - operation successful.

void igsSAinitGetAl Il dass (int tenplate)

Assisted Mode behaviour:

This function is called every time one of the interface buttons #1 to #4 is pressed
(making one of the tokens of the format TEMPLATEX30 to be joined to the query text).
i qsSAI ni t Get Al | C ass will start the internal query phrase synthesis with the text
"#i ndex TEMPLATEx GET ALL CLASS=", where i ndex is returned by
i qsGet Next @ obal HI ndex, and x, depending on the t enpl at e parameter, will
assume avaue among 1 and 4; i gs SAauxSet VBSt at e will set next interface state.

Batch Mode behaviour:

30x varying from 1 to 4.

INESC 2361 Qs Technical Reference Manual 53

Except that i qs SAauxSet VBSt at e isnot called, the rest of the function acts as
in Assisted Mode.

Return values (r | QS):
- | @S_NOVEMORY - not enough memory; operation aborted;
- | @S_SUCCESS - operation successful.

Secondary effects:
- | @S_NOVEMORY - cleansi gsSt at e. i gsQuery;

voi d i gsSAget Aoi dsBel | owCl ass(char FAR * cl ass)

Assisted Mode behaviour:

This function is called after choosing a cl ass in the hierarchy presented at
interface level, while making Templatel to Template4 query synthess.
i gsSAget Aoi dsBel | owCl ass will cal iqgsCetH erarchyAoids with
igsState.iqs@ and class as paameter's in order to recelve in
i gsState.iqgsQSall the AOIDs bellow cl ass. Thecl ass string will be added to
the internal query phrase being synthesized and the next interface state will be set via
i gsSAauxSet VBSt at e.

Batch Mode behaviour:
Except that i qsSAauxSet VBSt at e is not called, the rest of the function
behaves asin Assisted Mode.

Return values (r | QS):
- | @S_PARAMERR - bad parameters; operation aborted;
- I @S_NOVEMORY - not enough memory; operation aborted;
- | @S_ERROR - internal or unknown error; operation aborted;
- | @S_NOTFOUND - no objects found for the selected class hierarchy;
- | @S_SUCCESS - operation successful.

voi d igsSAafterAttr TypeChoi ce(int type)

Assisted Mode behaviour:

In Assisted Mode, i gsSAaft er At t r TypeChoi ce will be called after pressing
one of the buttons (coded in the t ype parameter) standing for the generic or class
attributes, facets, software life cycles, phases or characteristic relations. The tokens
AOGNAME, ATTNAME, FACNAME, SLCNAME, PHANAME and CRLNAME will reflect, at
the query phrase, the pressed button. If the refinement is still possible by the way just
chosen, then the respective set in i qsSt at e, may have to be updated3?, by caling
i gsSAauxl nit AttrLists, inorder to provide semantic assistance when choosing

3lthis will only happen if there was a previous refinement and the set has not been updated yet.

INESC 2361 Qs Technical Reference Manual 54

later a name or value from that set. i qs SAaux Set VBSt at e will set the next interface
state.

Batch Mode behaviour:
Always successful because there's no need to assure semantic assistance,

Return values (r | QS):

- | @S_PARAMERR - bad parameters; operation aborted;

- | @S_NOVEMORY - not enough memory; operation aborted;

- | @S_ERROR - internal or unknown error; operation aborted;

-1 @S_NOTFOUND - no objects found with defined generic attributes, or class
attributes, or facets, or software life cycles or phases or characteristic relations,

- | @S_SUCCESS - operation successful.

voi d i qsSAget AttrVal ues(int attrtype,
char FAR *attrnane)

Assisted Mode behaviour:

This function is caled in the case of a Templatel to Template4 and TemplateS
guery variants, after choosing one of the possible generic attributes, facets or class
atributes (coded in attrtype), from an interface list pane with their names.
i gsSAget Att r Val ues will then cdl i gsGet ACGVal ues,
i qsCet Facet sVal ues oriqgsGet Attri bsVal ues, respectively, in order to fill
igsState.igs@QV with the vaues gpecific to those names.
i gsSAauxSet VBSt at e will set the next interface state.

Batch Mode behaviour:

In Batch Mode, i qsSAget At t r Val ues will immediately return if the provided
attribute or facet (attrname) is unknown or no values were found for it.
i gsSAauxSet VBSt at e is not called; the rest of the function works as in Assisted
Mode.

Return values (r | QS):

- | @S_NOVEMORY - not enough memory; operation aborted;

- | @S_ERROR - internal or unknown error; operation aborted;

- | QS_BATCHNOGENATTR - generic attribute unknown; operation aborted; only
in Batch Mode;

- | QS_BATCHNOGENVAL - generic attribute without values, operation aborted;
only in Batch Mode;

- | QS_BATCHNCFACATTR - facet unknown; operation aborted; only in Batch

Mode;

- | QS_BATCHNCFACVAL - facet without values, operation aborted; only in
Batch Mode;

- | QS_BATCHNOATTATTR - class attribute unknown; operation aborted; only in
Batch Mode;

INESC 2361 Qs Technical Reference Manual 55

- | QS_BATCHNQOATTVAL - class attribute without values, operation aborted;
only in Batch Mode;
- | @S_SUCCESS - operation successful.

voi d i gsSAget Aoi dsByVal ue (int attrtype,
char FAR* attrnane,
char FAR *attrval ue,
i nt condi st)

Assisted Mode behaviour:

This function is caled in the case of a Templatel to Template4 and TemplateS
query variants, after choosing one of the possible values of a generic attribute, facet or
class attribute from the appropriate interface list pane. i qsSAget Aoi dsByVal ue
starts by updating i qsSt at e. i qsQSV. di st ance with the value of the parameter
condi st (which stands for conceptual distance) to be considered if at t r t ype means
that one is refining by facets. Then, i gsSAauxSel ect Aoi dsByVal ue is invoked
with the attrval ue parameter, so that in i qsState.i qsQS (or posshly in
i gsSt at e. i gsQSC) will only remain those objects having the value at t r val ue for
the attribute or facet whose name is attrnane. If the later task is successful,
at t r nanme isjoined to appropriate (depending on att rt ype) set of previous chosen
names (this will prevent users from choosing later the same generic attribute, facet or
class attribute). Also, if at t r nane was the last item of his list, then the attrt ype
refinement path is considered explored, becoming inaccessible. Once filtering of
iqgsState.iqsQS (oriqgsState.iqsQSC) has successfully occurred, the lists of
available generic attributes, facets, class attributes (and possibly software life cycles,
phases and characteristic relations) are cleaned, in order to enforce their update if, later,
one decides to make a refinement of the same kind. Finally i gsSAauxSet VBSt at e
and i gsSAauxAddToQuery are called to update i qsSt at e. i qsVBSt at e and
i gsSt ate. i gsQuery, respectively.

Batch Mode behaviour:

Except that updating the set of previous chosen items, cleaning the current lists,
checking if attrnane was the last chosen (class)attribute or facet and calling
i gsSAauxSet VBSt at e do not occur, the Assisted Mode description applies to the
Batch Mode.

Return values (r | QS):

- | QS_NOMEMORY - not enough memory; operation aborted;

- | @S_ERROR - internal or unknown error; operation aborted;

- | QS_BATCHNQAO DGENVAL - no objects found with the generic attribute
at t r name having the value at t r val ue; operation aborted; only in Batch
Mode;

- | QS_BATCHNQAO DFACVAL - no objects found with the facet att r nanme
having thevalue at t r val ue; operation aborted; only in Batch Mode;

INESC 2361 Qs Technical Reference Manual 56

- | QS_BATCHNQAO DATTVAL - no objects found with the class attribute
at t r name having the value at t r val ue; operation aborted; only in Batch
Mode;

- | @S_SUCCESS - operation successful.

voi d i gsSAget Aoi dsBySI ¢ (char FAR *sl c)

Assisted Mode behaviour:

This function is Template? specific. It is invoked after having chosen a software
life cycle from an appropriate interface list pane (whose contents are preserved in
i gsSt at e. i gsSLCNanes). i gsSAget Aoi dsBySl c will invoke
i qsCet Aoi dsBySLC in order to filter the query solution, presently in
iqsState.iqsQS, leaving only the objects associated with the software life cycle
given by sl c. Once filtering of i qsSt at e. i qsQS has successfully occurred, the
refinement by software life cycle and phases is considered finished, becoming
inaccessible, and the lists of available generic attributes, facets and class attributes are
cleaned, in order to enforce their update if, later, one decides to make a refinement of
that kind. Also, i gsSAauxAddToQuery and i gsSAauxSet VBSt at e are both
called to properly updatei qsSt at e. i qsQuery andi gsSt at e. i qsVBSt at e.

Batch Mode behaviour:

If none of the objectsini qsSt at e. 1 qsQS is associated with sl ¢ or with any
other software life cycle, i qsSAget Aoi dsBy S| ¢ will immediately return, ending the
batch solving of the present query. Except that cleaning the current lists of choosable
items and caling i gsSAauxSet VBSt at e aren't both performed, the Assisted Mode
description applies to the Batch Mode.

Return values (r | QS):

- | @S_PARANMERR - bad parameters; operation aborted;

- | @S_NOVEMORY - not enough memory; operation aborted;

- | @S_ERROR - internal or unknown error; operation aborted;

- | QS_BATCHNOSLC - no objects found associated with the software life sl c;
operation aborted; only in Batch Mode;

- | @S_SUCCESS - operation successful;

voi d i gsSAget SI csAndAoi dsByPha (char FAR *pha)

Assisted Mode behaviour:

This function is Template? specific. It is invoked after having chosen a software
life cycle phase from an appropriate interface list pane (whose contents are preserved in
i qsSt at e. i gsPHANanes). i gsSAget S| csAndAoi dsByPha will invoke
i qsGet SLCsByPHA in order to know every software life cycles containing the phase

INESC 2361 Qs Technical Reference Manual 57

pha. Then, for each one of these software life cycles, i qsGet Aoi dsBySLC is called
so that the current query solution (presently ini qsSt at e. i qsQS) is filtered, keeping
only the objects associated with the software life cycles actually containing pha. If there
was a unique software life cycle containing the provided phase (pha), then both the
refinements by phases and software life cycles are considered finished, becoming
inaccessible. Otherwise, the phase pha is added to the set
i qsSt at e. i gsPHANanesPr evi ous, so that no longer it will be possible to
specialize the query by that phase. Also, the lists of available generic attributes, facets,
class attributes, software life cycles and phases are cleaned, to enforce their update in
case later one decides to make a refinement (if possible) of that kind.
i gsSAauxAddToQuery and i gsSAauxSet VBSt at e are both called to properly
updatei qsSt ate. i qsQuery andi gsSt at e. i qsVBSt at e.

Batch Mode behaviour:

If none of the objectsini gqsSt at e. i qsQS is associated with the phase pha or
with a known software life cycle, i gsSAget SI csAndAoi dsByPha will
immediately return, ending the batch solving of the present query. Except that cleaning
the current lists of choosable items and calling i gs SAauxSet VBSt at e aren't both
performed, the Assisted Mode description applies to the Batch Mode.

Return values (r | QS):
| @QS_PARAMERR -bad parameters; operation aborted;

- 1 QS_NOMEMORY - not enough memory; operation aborted;

- | @S_ERROR - internal or unknown error; operation aborted;

- | QS_BATCHNOPHA - no objects found associated with the software life phase
pha; operation aborted; only in Batch Mode;

- | QS_SUCCESS - operation successful;

voi d i gsSAaft er| sConpoundPressed()

Assisted Mode behaviour:

This function is caled only in the case of a Template3 query variant, immediately
after the | sConmpound button has been pressed, making the AND | S COVPOUND
tokens to be joined to the query phrase. Theflagi qsSt at e. | sConpoundPr essed
isthen enabled and i qs St at e. 1 qs@S is filtered by i gsGet Conpounds. This will
leave in igsState.igsQ@ only the compound objects from the primitive
i qsSt at e. i qsQS content. Once this filtering has been successfully done, the lists of
available generic attributes, facets and class attributes are cleaned, in order to enforce
their update if, later, one decides to make a refinement of the same kind (this time over
compound objects). Finadly i gsSAauxSet VBSt at e and i qsSAauxAddToQuery
are caled to update iqsState.iqsVBState and igsState.igsQery,
respectively.

Batch Mode behaviour:

If none of the objects in iqsState.iqs@ is compound,
i gsSAaft erl sConpoundPr essed immediately returns, ending the batch solving

INESC 2361 Qs Technical Reference Manual 58

of the present query. The flag i qsSt at e. | sConpoundPr essed is left unchanged,
cleaning the current lists of choosable items doesnt take place and
i gsSAauxSet VBSt at e is not called. The remain of the Assisted Mode description
appliesto the Batch Mode.

Return values (r | QS):

- | @S_PARAMERR - bad parameters; operation aborted;

- | @S_NOVEMORY - not enough memory; operation aborted;

- | @S_ERROR - internal or unknown error; operation aborted;

- 1 @S_NOTFQOUND - no compounds found; only in Assisted Mode;

- 1 QS_BATCHI SCOVPOUNDNOCLAQGS - no compounds were found; operation
aborted; only in Batch Mode;

- | @S_SUCCESS - operation successful;

voi d i gsSAget Aoi dsByCar act Rel (char FAR *crl| nane)

Assisted Mode behaviour:

This function is caled during a Template3 or Templated query variant, after
choosing, in the appropriate interface list pane, one of the available characteristic
relations (received inthe cr | nanme parameter). i gs SAget Aoi dsByCar act Rel will
cal i gsGet O ust er sByCar act Rel in order to obtain from i qsSt at e. QS (or
i qsSt at e. QSC, in the Template4 query variant) only the objects being clusters and
having the crl name characteristic relation. If this is successfully accomplished,
crlname is joined to set of previous chosen characteristic relations
(igsState.i gsCRLNanesPr evi ous), preventing users from choosing later the
same characteristic. Also, if crlnane was the last item of
i gsSt ate. i gsCRLNanes, then this refinement path is considered explored,
becoming inaccessible, and the lists of available generic attributes, facets and class
attributes are cleaned, in order to enforce their update if, later, one decides to make a
refinement of that kind. Finaly i gsSAauxSet VBSt at e and
i gsSAauxAddToQuery are called to update i qsState.iqsVBState and
i gsSt ate. i gsQuery, respectively.

Batch Mode behaviour:

Except that updating, the set of previously chosen characteristic relations, cleaning
the current lists, checking if cr | name was the last chosen characteristic relation and
cdling i gsSAauxSet VBSt at e do not occur, the Assisted Mode description applies
to the Batch Mode.

Return values (r | QS):
- | @S_PARANMERR - bad parameters; operation aborted;
- | @S_NOVEMORY - not enough memory; operation aborted;
- | @S_ERROR - internal or unknown error; operation aborted;
- | @S_BATCHNOCRLS - no clusters found with the characteristic relationcr | ;
- | @S_SUCCESS - operation successful;

INESC 2361 Qs Technical Reference Manual 59

voi d i gsSAaft er Bel ongToConpoundPr essed()

Assisted Mode behaviour:

This function is called only in the case of a Template4 query variant and
immediately after the Bel ongToConpound button has been pressed, making the AND
BELONG TO COVPOUND tokens to be added to the query phrase. The flag
i qsSt at e. Bel ongToConpoundPressed is enabled and a copy of
iqgsState.iqs@S Is made to igsState.igqsQC S0 that
i qsGet Gl aoByMenber is invoked over it, leaving there the compound objects
containing the ones presently ini qsSt at e. i qsQS. Once this has been done, the lists
of available generic attributes, facets and class attributes are cleaned, in order to enforce
their update if, later, one decides to make a refinement of the same kind (this time,
however, over the compound objects kept by iqgsState.igsQSC). Finaly
i gsSAauxAddToQuery and i qgsSAauxSet VBState are caled to update
iqgsState.igqsQuery andi gsSt at e. i qsVBSt at e, accordingly.

Batch Mode behaviour:

If none of the objects in i qsState.iqsQS is member of a compound,
i gsSAaft er Bel ongToConmpoundPr essed immediately returns, ending the batch
solving of the present query. Theflagi qsSt at e. Bel ongToConpoundPr essed is
left unchanged, cleaning the current lists of choosable items doesn't take place and
i gsSAauxSet VBSt at e is not called. The remain of the Assisted Mode description
appliesto the Batch Mode.

Return values (r | QS):

- | @S_PARANMERR - bad parameters; operation aborted;

- | @S_NOVEMORY - not enough memory; operation aborted;

- | @S_ERRCR - internal or uknown error; operation aborted;

- 1 @S_NOTFOUND - no compounds found containing the present query solution;
only in Assisted Modeg;

- | QS_BATCHBEL ONGTOCOVPOUNDNOCLAGCS - no compounds were found
containing the present query solution; operation aborted; only in Batch Mode;

- | @S_SUCCESS - operation successful.

voi d i gsSAI nitQuery(int tenplate)

Assisted Mode behaviour:

This function is called every time one of the interface buttons #5 to #8 is pressed
(making one of the tokens of the format TEMPLATEX?32 to be added to the query text).
i qsSAI ni t Query will start the internal query phrase synthesis with the text
"#i ndex TEMPLATEX where i ndex is returned by
i qsGet Next G obal HI ndex, and x (depending on the t enpl at e parameter),

32x varying from 5 to 8.

INESC 2361 Qs Technical Reference Manual 60

will assume a value between 5 and 8; i qsSAauxSet VBSt at e will set the next
interface state.

Batch Mode behaviour:
Except that i qsSAauxSet VBSt at e is not called, the rest of the function
behaves like in Assisted Mode.

Return values (r | QS):
- | @S_NOVEMORY - not enough memory; operation aborted;
- | @S_SUCCESS - operation successful.

voi d i gsSAget Aoi dsFromQuery(int query)

Assisted Mode behaviour:

This function is caled during a non-kerne query synthesis (Template5 to
Template8 variants). It starts by puting into i qsSt at e. i qsQS the objects of a
previously solved query, whose History index is given by the query parameter (after
validated and converted from alocal to a global reference on the History). In the case of
a Template5 and Template6 query variants, i qs SAget Aoi dsFr omQuery will filter
igsState.iqs@s, by caling i qsGet Sour cesAndLi nks and
i qsCGet Sour ces, respectively, so that only source objects will remain there.
Additionally, the outgoing links are also retrieved in a Template5 query, alowing for the
igsState.i gsLNKNames st to be initidized for later use
i gsSAauxAddToQuery and i qsSAauxSet VBSt at e are also called to update
iqgsState.iqsQuery andi gsSt ate. i qsVBSt at e, accordingly.

Batch Mode behaviour:
Except that i qsSAauxSet VBSt at e is not called, the rest of the function
behaves asin Assisted Mode.

Return values (r | QS):
- | @S_PARAMERR - bad parameters; operation aborted;
- I @S_NOVEMORY - not enough memory; operation aborted;
- | @S_ERROR - internal or unknown error; operation aborted;
- I @S_NOSOURCES - no sources found; only in Assisted Mode;
- | QS_BATCHI NDEXNOTVALI D - unexpected index; operation aborted; only in
Batch Mode;
- | @S_BATCHNOSOURCES - no sources found; only in Batch Mode;
- | @S_SUCCESS - operation successful;

voi d i gsSAget Sour cesByLi nk(char FAR * | i nk)
Assisted Mode behaviour:

This function is called both in Template5 and Template6 variants, after choosing a
l[ink from an interface list pane, whose contents are preserved by

INESC 2361 Qs Technical Reference Manual 61

i qgsSt ate. i gsLNKNanes. It intends to leave in i gsState.igqsQS only the
objects being sources of the specified |ink. Therefore, for each source in
i gsSt ate. i qs@S, thelist of hislinksis searched for the presence of | i nk ('t he set
of these lists of links is kept by i qsState.iqsListListl initiaized during
i qsSAget Aoi dsFronfuery for the Template5 queries and initialized during
i gsSAget Sour cesAndLi nksBySi nks for the Template6 queries). If thel i nk is
found there, then the current object is assumed to be a source for that | i nk.
i gsSAauxAddToQuery and i qsSAauxSet VBSt at e are also called to update
iqgsState.iqsQuery andi gsSt at e. i qsVBSt at e, accordingly.

Batch Mode behaviour:
Except that i qs SAauxSet VBSt at e isnot called, the rest of the function acts as
in Assisted Mode.

Return values (r | QS):

- | @S_PARANMERR - bad parameters; operation aborted;

-1 QS_NOMEMORY - not enough memory; operation aborted;

- | @S_ERROR - internal or unknown error; operation aborted;

- 1 @S_BATCHNOLI NK - no source found for | i nk; operation aborted; only in
Batch Mode;

- | QS_SUCCESS - operation successful.

voi d i gsSAget Sour cesByLi nkAndSi nks(char FAR * |i nk,
i nt query)

This function is Template5 specific and it is invoked after choosing (for the second
time during the query synthesis), a History query, of index query (which is vaidated
and converted from a local to a global reference). The objects associated with this
previoudy solved query are submited, with igsState.iqsQS and |ink, to
i qsGet Sour cesByLi nkAndSi nks, so that every object ini gsState. i qgs@Sis
checked to see if it is a source of the relation | i nk, to at least one sink in the set of
objects of the History query. Only the sources obtained that way will remain in
igsState.igsQ@S. i gsSAauxAddToQuery and i gsSAauxSet VBSt at e are
aso called to update igsState.iqsQuery and igsState.iqsVBState,
accordingly.

Batch Mode behaviour:
Except that i qs SAauxSet VBSt at e isnot called, the rest of the function acts as
in Assisted Mode.

Return values (r | QS):

- | @S_PARANMERR - bad parameters; operation aborted;

- | @S_NOVEMORY - not enough memory; operation aborted;

- | @S_ERROR - internal or unknown error; operation aborted;

-1 @S_NOSI NKS - no sinks were found in the History query for the | i nk
outgoing fromi qsSt at e. i qsQS; operation aborted; only in Assisted Mode;

INESC 2361 Qs Technical Reference Manual 62

- | @S_BATCHNGOSI NKS - no sinks were found in the History query for the
I i nk outgoing from i qsState.igsQS; operation aborted; only in Batch
Mode;

-1 @S_BATCHI NDEXNOTVALI D - unexpected index; operation aborted; only in
Batch Mode;

- | @S_SUCCESS - operation successful;

voi d i gsSAget Sour cesAndLi nksBySi nks(i nt query)

i gsSAget Sour cesAndLi nksBySi nks is Template6 specific and it is
invoked after choosing a History query (for the second time during the query synthesis),
of index query (which is validated and converted from a local to a global reference).
Both the objects currently in i gsSt at e. i gsQS and the ones associated with this
History query, plus the iqgsState.iqsListList, ae submited to
i qsGet Sour cesAndLi nksBySi nks, so that in i gsState.iqsQS will only
remain the sources of at least one link to at least one sink in the History query
(igsState.iqgsListList will have, inturn, a specific list of outgoing links for each
source found). If this filtering ends successfully, i gsMakeSet will be caled to initiaize
i gsSt at e. i gsLNKNanes based on the contents of
i gsState.iqsListList.i gsSAauxAddToQuery and
i gsSAauxSet VBSt ate are caled to update iqsState.iqgsQuery and
i qsSt at e. i qsVBSt at e, accordingly.

Batch Mode behaviour:
Except that i qs SAauxSet VBSt at e isnot called, the rest of the function acts as
in Assisted Mode.

Return values (r | QS):

- | @S_PARANMERR - bad parameters; operation aborted;

- 1 QS_NOMEMORY - not enough memory; operation aborted;

- | @S_ERROR - internal or unknown error; operation aborted;

- | @S_NOSOURCE - no links found between i gs St at e. i qs QS and the History
guery; operation aborted; only in Assisted Mode;

- | @S_BATCHNOSOURCE - no links found between i qsSt at e. i qsQS and the
History quer y; operation aborted; only in Batch Mode;

- | QS_BATCHI NDEXNOTVALI D - unexpected index; operation aborted; only in
Batch Mode;

- | @S_SUCCESS - operation successful;

voi d i gsSAqueryUni on(int query?2)

Thisfunction is Template7 specific and it is invoked after choosing a History query
(for the second time during the query synthesis), of index quer y2 (which is validated
and converted from a local to a global reference). The objects associated with this
gquery2 ae joined, via iqsSetUnion, with the ones presently in

INESC 2361 Qs Technical Reference Manual 63

igsState.igsQ@S. i gsSAauxAddToQuery and i gsSAauxSet VBSt at e are
also called to update igsState.iqsQuery and igsState.iqsVBState,
accordingly.

Batch Mode behaviour:
Except that i qs SAauxSet VBSt at e isnot called, the rest of the function acts as

in Assisted Mode.

Return values (r | QS):

- | @S_NOVEMORY - not enough memory; operation aborted;

-1 @S_BATCHI NDEXNOTVALI D - unexpected index; operation aborted; only in
Batch Mode;

- | @S_SUCCESS - operation successful.

6.1 The IQS Semantic Actions Auxiliary API

voi d i gsSAauxSet VBSt at e(bool bl, ..., bool b25)

This procedure recelves the logica values (enable/disable) that
i gsSt at e. i gsVBSt at e structure fields must assume in order to reflect the state of
the query synthesis. Recall to section 4.2.2 for a brief description of those fields.
i gsSAauxSet VBSt at e is specific to Assisted Mode.

i nt i gsSAauxAddToQuery(char FAR *string)

This function is responsible for appending the stri ng parameter (a set of
gyntactically and semantically valid tokens), to the query phrase,
i qsSt ate. i gsQuery, presently under construction.

Return values:
- | @S_NOVEMORY - not enough memory; operation aborted;
- | @S_SUCCESS - operation successful.

Secondary effects:
- | @S_NOVEMORY - cleansi gsSt at e. i gsQuery.

i nt i gsSAauxAddQueryToHi story()

The operation of adding a solved query to the History is performed after a
successful query resolution. i gs SAauxAddQuer yToHi st ory first adds the query

INESC 2361 Qs Technical Reference Manual 64

text, presently in iqsState.iqgsQuery, and then the respective objects, in
igsState.iqgs(s.

Return values:
- | @S_NOVEMORY - not enough memory; operation aborted;
- | @S_SUCCESS - operation successful.

int iqgsSAauxlinitAttrLists()

This function is called by i qsSAafterAttr TypeChoi ce every time a
refinement by generic attributes, facets, class attributes, software life cycles, phases or
characteristic relations is initiated by pressing the respective interface button. The goal is
to initialize or update the i qsSt at e fiddsi qsState. i qsACGAt t ri bs (through
i qsCGet ACGAttri bs),i qsState.i qsFACAttri bs (throughi gsGet Facet s),

iqgsState.i qsCLAAttri bs (through i qsCGet O assAttri butes),
i qsSt at e. i gsSLCNanes (through i gsCGet SLCs), i gsSt at e. i gsPHANanes
(through i qsGet PHAS) and i gsSt at e. i gsCRLNanes (through

i gsGet Car act Rel) only with the semantically valid tokens in the context of the
current query solution, that is, only the generic attributes, facets, etc, defined by the
objectsini qsSt at e. i qsQS will be of interest and become available to the user. Also,
in each case, the respective set of previousy chosen tokens is removed from the one here
obtained, in order to prevent the users to re-enter old (and so redundant) refinement
paths. i gsSAaux| ni t AttrLi st s isspecific to Assisted Mode.

Return values (r | QS):

- | @S_NOVEMORY - not enough memory; operation aborted;

- | @S_ERROR - internal or unknown error; operation aborted;

- | @S_PARANMERR - bad parameters; operation aborted;

- 1 @S_NOTFOUND - no generic attributes, facets, class attributes, software life
cycles, phases or characteritic relations available;

- | @S_SUCCESS - operation successful.

i nt i gsSAauxSel ect Aoi dsByVal ue(char FAR *val ue)

i gsSAauxSel ect Aoi dsByVal ue is cdled by i gsSAget Aoi dsByVal ue
to project i qsState. i qsQSV over iqsState.iqsQ@S (igsState. i qs@C in
the case of a Templated query variant). That is, only the objects whose values in
igsState.iqsQSV are equal to val ue shdl remain in i gsState.iqsQS (or
igsState.iqs@C in the case of Templated). However, if
igsState.igsQSV.distance is grester than -1, this means that
igsState.igsQSV is a set of facets values and so, the conceptua distance field,
igsState.igqsQSV. di stance, should be considered during i qsSt ate. i qsQS
filtering, that is, only the objects whose facets values in i qsSt at e. i qsQSV have a
conceptual distance, from the parameter value, of a least

INESC 2361 Qs Technical Reference Manual 65

igsState.igqsQSV.distance, will reman in iqsState.iqs@ (or
i qsSt at e. i qsQSC in the case of Template4). This specia case is handled by calling
the ct sSear chAr ¢ function.

Note that if val ue isan empty string, i qsSt at e. i gsQSV. di st ance will be
ignored, and a simple projection takes place.

If val ue isnot an empty stringandi qsSt at e. i qsQSV. di st ance is greater
than - 1, then ct sSear chAr ¢ will not be caled every time the value retrieved from
fromi qsSt at e. i qsQSV. i nf o isan empty string.

Return values:

- | @S_NOVEMORY - not enough memory; operation aborted;

- | @S_ERROR - internal or unknown error; operation aborted;

- | @QS_NOTFOUND - unknown val ue (not found in
i gsSt ate. i qsQSV. i nf 0); operation aborted,;

- | @S_SUCCESS - operation successful.

Secondary effects:
- | @S_NOVEMORY, | @S_ERROR, | @S_NOTFOUND - cleans
igsState.igqsQS(igsState.iqsQC);

7 The IQS Visual Basic related API

The next oate of the Visual Basc interface layer is kept at
i gsState.igsVBstate. Aditionadly, the contents of some list-pannes are also
maintained by some specific fields of the i qs St at e global variable33. These structures
are updated, in a deterministic way, every time a semantic actions is executed. In order
to let the Visual Basic interface layer to reflect the contents of these variables, a set of
exportable functions, allowing for the retrieval of that information, must be provided.
Also, functions to reset the i qs St at e fields when starting (or during or terminating) an
|Qs session, are needed. Finaly, a way must be provided to invoke the IQL Parser, with
the query (or batch of querys) text.

The following functions take care of the previous subjects; they can be found at
igs.cfile.

int WNAPI _ export VBi qsReset Parser (i nt node)

Depending on the node parameter, the VBi qsReset Par ser function will
initialize (or deallocate) some specifici qs St at e fields, namely some sets of names and
values, flags, thei qsVBst at e structure, etc3”.

33recall 4.2 The ParserState data type. The History is handled separately because there are
circumstances in which VBi qsReset Par ser is called but the History must be left intact.

INESC 2361 Qs Technical Reference Manual 66

node possible values:

- | QS_START, | QS_STARTBATCH - immediatly after entering an 1Qs session
or changing the 1Qs operation mode;

- | @S_NEXT - immediatly before a query synthesis (in Aided Mode) or
immediatly before processing the next query of abatch (in Batch Mode);

- | QS_END - immediatly before leaving an 1Qs session or changing the IQs
operation mode;

Return values:
- | @S_SUCCESS - operation (always) successful.

int WNAPI _ _export VBigslnitHi story()
This function exclusively initidizesthei qsSt at e. i gsQuer yHi st ory field.

Return values:
- | @S_SUCCESS - operation (always) successful.

int WNAPI _ export VBiqsC earHi story()

VBi qsCl ear Hi story will cdl i qsCl eanSet in order to deallocate and
reinitialize the History structure, iqgsState.igsQueryHi story.
i gsSAauxSet VBSt at e is also called so that the Template buttons (in the Assisted
Mode) and the History and Display menus (in both operation Modes) reflect the empty
state of the History structure.

Return values:
- | @S_SUCCESS - operation (always) successful.

int WNAPI _ export VBi qsSaveHi story(LPSTR VBfil e)

This function will save, at the file specified by VBf i | e, the text of the querys kept
by the History.

Return values:
- | @S_BATCHI OERROR - open error or write error over VBf i | e file
- | @S_SUCCESS - operation successful.

int WNAPI _ export VBi qsCet VBSt at e(VBSt ate *st at e)

INESC 2361 Qs Technical Reference Manual 67

This function will make a copy, field by field, of thei qsSt at e. i qsVBSt at e
structure into the st at e parameter. The st at e parameter should be a pointer to a
Visual Basic structure of the type VBI qsSt at e. VBi qsGet VBSt at e dlows the
information concerning the enable/disable state of the interface buttons and list panes to
access to the Visual Basic layer.

Return values:
- | @S_SUCCESS - operation (always) successful.

int WNAPI _ export VBi qsGet Query(HLSTR query)

VBi qgsCet Query will cdl VBSetH str so that a copy of
iqgsState.igqsQuery is made to query. This is how a copy of the query, as
synthesised by the semantic actions, can access the Visual Basic layer.

Return values:
- | @S_SUCCESS - operation (always) successful.

int WNAPI _ export VBi qsGet NanmeFr omNaneLi st (
HLSTR VBnane, int nanelist, int node)

This function will return, on successive calls (first cal with nrode=lI QS_START
and the following ones with mode=I QS_NEXT), all the names contained in the set of
names coded in the nanel i st integer parameter. VBi gqsGet NanmeFr onNaneLi st
will cal VBSet H st r to make VBnamne acopy of the present name of the list of names
being scanned. By invoking VBiI qsGet NanmeFr onNaneLi st until receiving
| @QS_NOTFOUND, the Visua Basic layer expects to receive the contents, one by one, of
a list of names (most of the times, to be displayed at an interface list pane). The
parameter nanel i st ischecked only if nrode=I QS_START.

namel i st possible values:

- | QS_AOGNAMELI ST -igsState. i qsACGAttri bs will be scanned;
- | QS_FACNAMELI ST -igsState. i qsFACAttri bs will be scanned;
- | @QS_CLANAMELI ST -igsState. i qsCLAAttri bs will be scanned;
- | QS_SLCNAMELI ST -i qsSt at e. i qsSLCNanes will be scanned;

- | @QS_PHANAMELI ST -i qsSt at e. i gsPHANanes will be scanned;

- | @QS_CRLNAMELI ST -i qsSt at e. i gsCRLNanes will be scanned;

-1 @S_LNKNAMELI ST -i gsSt at e. i gsLNKNanes will be scanned.

node possible values:

- | @QS_START - get thefirst name;
- | @S_NEXT - get the next name.

INESC 2361 Qs Technical Reference Manual 68

Return values:

- 1 QS_NOTFOUND - no (more) names available at the list of names specified by
namel i st;

- | QS_SUCCESS - operation successful.

int WNAPI _ export VBIi qsGet Val uesFr omQSV(
HLSTR VBval ue, int node)

VBi gsCet Val uesFr ontQSV will return, on successive calls (first cal with
node=l QS_START and the following ones with node=l QS_NEXT), al the vaues
contained in the iqgsState.iqgsQSV. VBi gsCet Val uesFrontSV will cal
VBSet Hl str to make VBval ue a copy of the present value retrieved from the
i gsState.iqgsQSV list. By invoking VBi qsCGet Val uesFr omQSV until receiving
| @QS_NOTFOUND, the Visual Basic layer expects to receive the contents of
i qsSt at e. i qsQSV, one by one and without redundant or empty values.

node possible values:
- | QS_START - get thefirsti qsSt at e. i qsQSV value,
- | @QS_NEXT - getthenexti qsSt at e. i qsQSV vaue.

Return values:

- I @S_NOVEMORY - not enough memory; operation aborted;

- 1 QS_NOTFOUND - no (more) values availableati qsSt at e. i qsQSV;
- | @S_SUCCESS - operation successful.

int WNAPI _ export VBi qsCet Hi story(HLSTR VBquery,
i nt node)

This function will return, on successive calls (first cal with nrode=lI QS_START
and the following ones with node=I QS_NEXT), the text of all the queries contained at
the History. VBi qsGet Hi st ory will cal VBSet H st r to make VBquery acopy of
the present query text retrieved fromi qsSt at e. i qsQuer yHi st ory.

node possible values:

- | QS_START - get the text of the first query kept by the History
(igsState.igsQueryH story. querys[0] . querytext);

- | QS_NEXT - get the text of the next query of the History.

Return values:

- 1 QS_NOTFOUND - no (more) queries available a
igsState.igsQueryHi story;

- | @S_SUCCESS - operation successful.

INESC 2361 Qs Technical Reference Manual 69

int WNAPI _ export VBi qsGet Aoi dsFrontHi st ory(
i nt query);

VBi gqsCet Aoi dsFronHi st ory will makei qsSt at e. i qsQS a copy of the
AOQOIDs of the quer yth query of the History. That copy will be mostly used by some
Result Manager facilities.

Return values:

- | @S_ERROR - internal or unknown error; operation aborted;
- | QS_I NDEXNOTVALI D - invalid index; operation aborted

- | @S_SUCCESS - operation successful.

int WNAPI _ export VBIi qsCet Resul t (
LPACENTRYGEN aoGen, i nt node)

This function will return, on successive calls (first cal with node=lI QS_START
and the following ones with node=I QS_NEXT), some of the genneric information (via
aoCen) of every AOID of i gsSt at e. i gsQS. This data will be depicted in a table,
just after having pressed the CHECK button (during the query synthesis), in Aided Maode.

node possible values:
- | QS_START - getsthe generic datafor the first AOID ini qsSt at e. i qs(S;
- | QS_NEXT - getsthe generic datafor the next AOID ini qsSt at e. i qs(S;

Return values:

- | @S_ERROR - internal or unknown error; operation aborted;

- | @S_NOTFOUND - no (more) objects availableati qsSt at e. i qs(S;
- | @S_SUCCESS - operation successful.

int WNAPI _ export VBi qsShowAC(voi d)
int WNAPI _ export VBi qsShowLNK(voi d)
int WNAPI _ export VBi qsShowVvBR(voi d)

These three functions are in charged of initializing the Result Manager appropriate
data structures in order to display facets, links or members related information,
concerning the objects kept in i gsSt at e. i gsRM These objects are a copy of
iqgsState.iqs@S (or i gsState.iqsQ@C), which has the temporary or fina
solution of the query being made, or from a specific query of the History.

Return values:

- | @S_NOVEMORY - not enough memory; operation aborted;
- | @S_ERROR - internal or unknown error; operation aborted;
- | @S_SUCCESS - operation successful.

INESC 2361 Qs Technical Reference Manual 70

int WNAPI _ export VBi gqsParser (LPSTR VBstring)

In Assisted Mode, the Visua Basic layer will call VBi gsPar ser whenever it
wants the query phrase VBst r i ng to be recognized and solved. VBi qsPar ser will,
inturn, call yypar se with alocal copy of VBst ri ng.

Return values:

- | @S_NQOVEMORY - not enough memory; operation aborted;

- | @S_PARSERROR - parser internal error; operation aborted;
- every other possible integer code returnable in Assisted Mode

int WNAPI _ export VBi qsBat chParser (LPSTR VBfil e)

In Batch Mode, the Visua Basic layer will call VBi qsBat chPar ser whenever
it wants a batch of queries to be solved. This set of query phrases is presumed to be kept
in a file whose path name is given by the VBf i | e parameter. After the file has been
loaded into memory, and i gsSet Next Local HI ndex has been caled with O (zero)
(in order to start a new local context of references on History), VBi qsBat chPar ser
will invoke yypar se with the batch (in memory) to be solved. During this process,
every time a query is successfully terminated, i qs SAcheck is called in order to refresh
alog file, | ogfil e.i gs, with the contents of i qsSt at e. i qsQS and the suffix
SUCCESS. However, if an error occurs during the parsing process or inside a semantic
action, the remaining queries of the batch are ignored (not solved). In this case, the log
file will contain only the text of the queries successfully solved (and the respective suffix,
SUCCESS) as well as the part of the query text managed to be solved just before the
error took place (this late text and a suffix indicating the error is provided by
VBi gsBat chPar ser assoonasyypar se returns).

Return values (appearing a so as suffix tokens):
| @S_PARSERROR - parser internal error; operation aborted;
-1 QS_NOMEMORY - not enough memory; operation aborted;
- | QS_PARAMERR - bad parameters; operation aborted;
- | @S_ERROR - internal or unknown error; operation aborted;
- | QS_BATCHI CERROR - 1/O eror over logfile.iqs or VBfile;

operation aborted,;

- | QS_BATCHNOVEMORY- not enough memory to load VBfi | e; operation
aborted;

- 1 QS_BATCHNOOBJS - no objects available for the specified class, operation
aborted;

- | QS_BATCHNOGENATTR - unknown generic attribute; operation aborted;

- | QS_BATCHNOFACATTR - unknown facet; operation aborted;

- | QS_BATCHNCATTATTR - unknown class attribute; operation aborted;

- | QS_BATCHNOGENVAL - no vaues found for the specified generic attribute;
operation aborted,;

INESC 2361 Qs Technical Reference Manual 71

- | QS_BATCHNCFACVAL - no vaues found for the specified facet; operation
aborted;

- | QS_BATCHNQOATTVAL - no values found for the specified class attribute;
operation aborted,;

- | QS_BATCHNQAO DGENVAL - no objects found with the specified generic
attribute; operation aborted,;

- | QS_BATCHNQAO DFACVAL - no objects found with the specified facet;
operation aborted,;

- | QS_BATCHNQAO DATTVAL - no objects found with the specified class
attribute; operation aborted,;

- 1 QS_BATCHNOSLC - no objects found with the specified software life cycle;
operation aborted,;

- | QS_BATCHNOPHA - no objects found with the specified software life cycle
phase; operation aborted,;

- 1 QS_BATCHI SCOVPOUNDNOCLAQGS - no compounds available in the previous
selected objects; operation aborted;

- | QS_BATCHNOCRLS - no objects found with the specified characteristic
relation; operation aborted,;

- | QS_BATCHBELONGTOCOMPOUNDNOCLACS - no compounds found
containing the previous selected objects; operation aborted;

- | QS_BATCHI NDEXNOTVALI D - invalid History index; operation aborted;

- | QS_BATCHNOSOURCES - no sources available in the previous selected
objects; operation aborted;

- 1 QS_BATCHNCLI NK - no source available for the specified link, in the
previous selected object; operation aborted;

- | QS_BATCHNOCSI NKS - no sinks available for the specified link, in the last
selected objects; operation aborted;

- 1 QS_BATCHNOSOURCE - no source for the specified sinks, in the previous
selected sources; operation aborted;

- | @S_SUCCESS - operation successful.

8 1QS module cross reference

This chapter shows the globa cross reference for all of the functions of the 1Qs
module. The 1Qs module functions make interna calls’* as well as externa cals to the
ERA, CoN, Rm and CTs modules. Thus, the provided description will be based on afield
for the name of the caller 1Qs function and, whenever necessary, specific fields for the
called functions on other modules.

This cross reference distinguishes between functions implemented in the igs.c and
actions.c files. For each file, the functions are gathered in groups reflecting their main
functionalities.

8.1 Cross reference for the igs.c file

34that is, they also call functions of their own module

INESC 2361 Qs Technical Reference Manual 72

8.1.1 1QS API Auxiliary functions

I QS function

I QS calls

i gsFreal | oc

i gsStrtok

i gsCheckWor dl nLi st

i qsStrt ok

i gsGet Attr Val ue

i gsCheckWor dl nLi st

8.1.2 Set API functions

I QS function QS calls
i gsCl eanSet i gsCl eanSet
i gsCopy Set i gsCl eanSet
i gsSet Di f f erence i gsCopy Set
i gsCl eanSet
i gsCheckWor dl nLi st
i gsSet | ntersection i gsCopy Set
i gsSet Di ff erence
i gsCl eanSet
i gsSet Uni on i gsCopy Set
i gsCl eanSet
i gsFreal | oc
i gsMakeSet
i gsMakeSet i gsCl eanSet
i gsFreal | oc
i gsCheckWor dl nLi st
i gsMakeSet
i gsCopy Set
8.1.3 1QS API functions
I QS function QS calls ERA call's CON cal I's
i gsGet Hi er ar chyAoi ds i gsCl eanSet er aGet oj
i gsFreal | oc
i gsGet Attr Val ue
i gsCopy Set
i gsSet Di ff erence
i gsCGet AOGAttri bs i gsCl eanSet er aGet Obj

i gsCheckWor dl nLi st

i gsSet Di ff erence

i gsGet Attr Val ue

i gsFreal | oc

i gsGet ACGVal ues

i gsCl eanSet er aGet oj

i gsGet Attr Val ue

i gsFreal | oc

i gsCet Facet's

i gsCl eanSet er aGet oj

i gsFreal | oc

i gsCheckWor dl nLi st

i gsGet Attr Val ue

i gsSet Di ff erence

i gsCet Facet sVal ues

i gsCl eanSet er aGet oj

INESC 2361

IQs Technical Reference Manual

73

i gsGet Attr Val ue

i gsFreal | oc

i gsGet Cl assAttri butes

i gsCl eanSet

er aGet Obj

i gsGet Attr Val ue

i gsCheckWor dl nLi st

i gsSet Uni on

i gsGet Attri bsVal ues

i gsCl eanSet

er aGet (bj

i gsGet Attr Val ue

i gsFreal | oc

i gsGet SLCs

i gsCl eanSet

er aGet Obj

i gsGet Attr Val ue

i gsCopy Set

i gsMakeSet

i gsCGet PHAs

i gsCl eanSet

i gsGet SLCs

i gsCheckWor dl nLi st

i gsCGet PHASBySLC

i gsSet Uni on

i gsMakeSet

i gsCGet PHASBySLC

i gsCl eanSet

conCet SLCPHA

i gsFreal | oc

i gsGet Aoi dsBySLC

i gsCl eanSet

er aGet (bj

i gsGet Attr Val ue

i gsCopy Set

i gsCet SLCsByPHA

i gsCl eanSet

i gsCheckWor dl nLi st

i gsCGet PHASBySLC

i gsCopy Set

i gsCGet Conpounds

i gsCl eanSet

conGet Mor

i gsCopy Set

Note: i gsGet Hi er ar chyAoi ds calsaso VCsrvGet d asses at the SRv module.

i gsCet Car act Rel i gsCl eanSet conGet Mor Lnk
i gsFreal | oc conGet Lnk
i gsSet Uni on

i gsCet Cl ust er sByCar act Rel i gsCl eanSet conGet Mor Lnk
i gsFreal | oc conGet Lnk
i gsSet Uni on
i gsCopy Set

i gsCet Cl aoByMenber i gsCl eanSet conGet Mor
i gsFreal | oc
i gsMakeSet

i gsCGet Menber By ao i gsCl eanSet conGet Mor
i gsFreal | oc
i gsMakeSet

i gsCet Sour ces i gsCl eanSet conGet Lnk
i gsCopy Set

i gsGet Sour cesAndLi nks i gsCl eanSet conGet Lnk
i gsFreal | oct
i gsCopy Set

i gsGet Sour cesByLi nkAndSi nks | gsC eanSet conGet Lnk
i gsCopy Set

i gsGet Sour cesAndLi nksBySi nks |i gsC eanSet conGet Lnk
i gsFreal | oc

INESC 2361

IQs Technical Reference Manual

74

|i gsCopy Set

8.1.4 1QS Visual Basic related API functions

I QS function I QS calls RM cal |'s
IVBi gsReset Par ser i gsSAauxSet VBSt at e
i gsCl eanSet
IVBi gsl ni t Hi story
I\VBi qsCl ear Hi st ory i gsCl eanSet
i gsSAauxSet VBSt at e
I\VBi gsSaveHi st ory
I\Vbi qsCet VBSt at e
I\Vbi gsGet Query
IVbi qsGet NameFr omNaneLi st i gsCheckWor dl nLi st
IVbi gsCGet Val uesFr omQSV i gsMakeSet
i gsSet Di ff erence
i gsCl eanSet
i gsCheckWor dl nLi st
IVBi qsCet Hi st ory
IVBi gqsCet Aoi dsFrontHi st ory i gsCopy Set
IVBi qsCet Resul t
IVBi gs ShowFAC i gsCopy Set r nReset
i gsGet Menber ByCl ao r mMAddVert ex
i gsSet | ntersection r mMAddAr ¢
IVBi s ShowlNK i gsCopy Set r nReset
i gsGet Menber ByCl ao r mMAddVert ex
i gsSet | ntersection r mMAddAr ¢
IVBi gs ShowVBR i gsCopy Set r nReset
i gsGet Menber ByCl ao r mMAddVert ex
i gsSet | ntersection r mMAddAr ¢

I\VBi gsPar ser

I\VBi gsBat chPar ser

i gsSAauxSet VBSt at e

8.2 Cross reference for the actions.c file

8.2.1 1QS Semantic Actions Auxiliary API functions

I QS function I QS calls CTS call's
i gsSAauxSet VBSt at e
i gsSAauxAddToQuery i gsFreal | oc

i gsSAauxAddQuer yToHi story

i gsFreal | oc

i gsCopy Set

i gsSAauxlnitAttrlLists

i gsGet ACGAttri bs

i gsSet Di ff erence

i gsCet Facet's

i gsGet Cl assAttri butes

i gsMakeSet

i gsGet SLCs

i gsCGet PHAs

i gsGet Car act Rel

i gsSAauxSel ect Aoi dsByVal ue

i gsCheckWor dl nLi st

ct sSear chArc

INESC 2361

IQs Technical Reference Manual

75

i gsSet Uni on

i gsCl eanSet

i gsCopy Set

8.2.2 1QS Semantic Actions API functions

I QS function QS calls
i gsSAcheck i gsSAauxAddQuer yToHi story
i gsCGet Menber ByCl ao
i gsSet | ntersection
IVBi gsReset Par ser
i gsSAabort IVBi gsReset Par ser

bat chl gsSAcheck! ndex

i gsSAi nit Get Al | Ol ass

i gsSAauxAddToQuery

i gsSAauxSet VBSt at e

i gsSAget Aoi dsBel | owCl ass

i gsGet Hi er ar chyAoi ds

i gsSAauxInitAttrlLists

i gsSAauxAddToQuery

i gsSAauxSet VBSt at e

i gsSAafter AttrTypeChoi ce

i gsSAauxInitAttrlLists

i gsSAauxSet VBSt at e

i gsSAget Attr Val ues

i gsCl eanSet

i gsCGet AOGVal ues

i gsCet Facet sVal ues

i gsGet Attri bsVal ues

i gsSAauxSet VBSt at e

i gsSAget Aoi dsByVal ue

i gsSAauxSel ect Aoi dsByVal ue

i gsSet Uni on

i gsSet Di ff erence

i gsCl eanSet

i gsSAauxSet VBSt at e

i gsSAauxAddToQuery

i gsSAget Aoi dsBySl ¢

i gsGet Aoi dsBySLC

i gsSAauxAddToQuery

i gsCl eanSet

i gsSAauxSet VBSt at e

i gsSAget S| csAndAoi dsByPha

i gsGet SLCs

i gsCet SLCsByPHA

i gsCheckWor dl nLi st

i gsCl opy Set

i gsGet Aoi dsBySLC

i gsSet Uni on

i gsMakeSet

i gsSAauxAddToQuery

i gsSAauxSet VBSt at e

i gsCl eanSet

i gsSAaft er| sConpoundPressed

i gsCopy Set

i gsCGet Conpounds

i gsSAauxSet VBSt at e

i gsCl eanSet

i gsSAauxAddToQuery

i gsSAget Aoi dsByCar act Rel

i gsGet Cl ust er sByCar act Rel

i gsSet Uni on

INESC 2361

IQs Technical Reference Manual

76

i gsSet Di ff erence

i gsCl eanSet

i gsSAauxSet VBSt at e

i gsSAauxAddToQuery

i gsSAaft er Bel ongToConpoundPr essed

i gsCopy Set

i gsCet Cl aoByMenber

i gsCl eanSet

i gsSAauxSet VBSt at e

i gsSAauxAddToQuery

i gsSAI ni t Query

i gsSAauxAddToQuery

i gsSAauxSet VBSt at e

i gsSAget Aoi dsFromQuery

i gsCopy Set

i gsGet Sour cesAndLi nks

i gsMakeSet

i gsSAauxSet VBSt at e

i gsCet Sour ces

i gsSAauxAddToQuery

i gsSAget Sour cesByLi nk

i gsCheckWor dl nLi st

i gsSet Uni on

i gsCl eanSet

i gsCopy Set

i gsSAauxSet VBSt at e

i gsSAauxAddToQuery

i gsSAget Sour cesByLi nkAndSi nks

i gsCopy Set

i gsGet Sour cesByLi nkAndSi nks

i gsCl eanSet

i gsSAauxSet VBSt at e

i gsSAauxAddToQuery

i gsSAget Sour cesAndLi nksBySi nks

i gsCopy Set

i gsGet Sour cesAndLi nksBySi nks

i gsCl eanSet

i gsMakeSet

i gsSAauxSet VBSt at e

i gsSAauxAddToQuery

i gsSAquer yUni on

i gsSet Uni on

i gsSAauxAddToQuery

i gsSAauxSet VBSt at e

INESC 2361

IQs Technical Reference Manual

77

References

[1QS-2.1] "Intelligent Query System - Functional Specification & Architecture”,
Version: 2, Revision: 1.

[GF93] "Como redireccionar o input de um reconhecedor baseado em lex e yacc
para uma zona de memoria', Geraldina Fernandes - Universidade do Minho,1993

[CM-1.4 1993] Comparator & Modifier. Functional Specification & Architecture.
Version: 1, Revision: 4; Workpackage WP2B of Collaboration Offer by INESC.

INESC 2361 Qs Technical Reference Manual 78

