IOS Demo Session

The 1QS Demo Session basicaly consists on a sequence of screenshots showing the
full use of the main capabilities of both the IQs Assisted and Batch Modes.

The Assisted Mode Demo Session covers al the query Templatesl. Results
visuaization based on the Result Manager facilities and switching into and back from the
Batch Mode are also explored.

The Batch Mode Demo Sesson mainly focuses on History manipulation
(importing, joining, etc) as well as on showing an alternate and less restrictive way to
make queries.

Assisted Mode 1QS Demo Session

Assisted Mode is the default mode when entering the QS subsystem. Screenshoot
0 presents the IQS Assisted Mode front-end for an empty History state. Note that
because the History is empty, the related operations are unavailable (History Menu is
disabled). Also, for this reason, the last four Templates (which are based on re-using
objects from the History) are not yet choosable.

SOUR — S0ftware Use and Reuse - [IQS — Intelligent Query System]

Ar (40

=| File £#i Searsh Mode Histsry Display Window Help
EEEE
Menu History disabled (History empty)
- .
% Templatel being selected

<

Check button

1 Template2 to Template4 available for selection

X

Cancel button

Template5 to Template8 buttons disabled =
(History empty) Help button ?

Description of the selected Template

| | GET &LL CLASS=<class> <AltributeD escription]>* [

Screenshoot 0 - 1Qs Assisted Mode front-end

1Recall the meaning of each Template from the section ?? of the QS Functional Specifications
document.

Templatel demo

Just after having pressed the Templatel button, the USR class hierarchy is
presented, in order to let a user class to be choosen. This class selection is
common to al the kernel-Templates (Templatel to Templated) and only happens
once per query. The objects belonging to that class are the ones to be
successively refined during the querying process (basicaly, kernel-Templates
differ on the refinement criteria).

During any Template solving, if the Check button is enabled, then there's
already a solution to the query, being that the set of objects solving the query
sinthesized so far (this temporary solution can be visualized through Result

Manager?).

Screenshoot 1 shows 1QS's Templatel desktop after selecting the class
COWPANI ES and about to starting the refinement by generic attributes. The
possible refinement mechanisms for the Templatel queries are generic attributes,
user defined class attributes and facets, each one being accessible by a specific

interface button.

S0UR — S0ftware Use and Reuse - [IQS — Intelligent Query System]

Ak |40

Ldi Resrsh Mode History Display Window Help
User defined class attributes button
Generic attributes button being pressed Facets button
r Make Query
Classes: USR class hierarchy
ClsR
~PROJECTS M @
~SOURCES

CODE \/
C
PASCAL
WERASIC
DLL

DOCUMEMTS
LATEX
WIORD
ASCI

MAKEFILES
YEMAK X
WEMAK

u

EUSEF!S |

ser class COMPANIES selecte

query text so far synthesized

o

IﬂD TEMPLATET GET ALL CLASS="COMPAMNIES"

2]

| | GET ALL CLASS=¢class> <AttibuteDescription]>*

Screenshoot 1: starting refinement of the class COVPANI ES objects by
generic attributes.

Having choosen the refinement through generic attributes, one can proceed
by specifying the name of a generic attribute and then the respective value (thisis

also valid for user defined class attributes or facets).

2refer to section ?? for more details.

Screenshoot 1.1 shows the selection of the generic attribute NAVE from a
list-box (Generic Attributes) of al the generic attribute names available to
choose. That list was only made visible after having pressed the generic
attribute’'s button, which, at any time, is only enabled if there are generic
attributes remaining to choose (repeated filtering by the same attribute or facet is
not allowed?). This is also true for the user defined class attributes button and
facets button (in fact, it is perfectly legal to interrupt the refinment by a certain
attribute or facet by pressing a button concerning other attribute or facet).

S0UR — S0ftware Use and Reuse - [IQS — Intelligent Query System]

Ak |40

=| File L4t Hearsh Mode Hisisry Display Window Help
|
genneric attribute NAME being selected
r Make Query
ol Classes:
il
aa —
~PROJECTS M @
= M -SOURCES
g CODE \/
£ C
PASCAL Gennenc Attributes:
WBASIC
DLL
DOCUMEMTS
LATEX
WORD
ASCI
MAKEFILES
YEMAK X
B hAK,
USERS
available genneric attributes
E
IﬂD TEMPLATET GET ALL CLASS="COMPAMIES" lél

Screenshot 1.1: Choosing the generic attribute NAVE.

Having selected a name from the Generic Attributes list box, the union of
all the values relative to that name can be found at the Values list box. The
selection of a certain value from this list box will make the actual solution to keep
only the objects associated with that value, for the name previously choosen.
Screenshoot 1.2 shows this situation for the particular case of the value SYSTENA
of the generic attribute NAMVE.

Screenshoot 1.3 shows the remaining generic attribute names, after having
completed the filtering through the generic attribute NAME.

Srecall the subject of avoiding redundancy at section ?? of the 1QS Functional Specification

Manual.

S0UR — S0ftware Use and Reuse - [IQS — Intelligent Query System]
Help

oo

IEEEE

Make Query

i!= % Classes:

1"
]
PROJECTS ﬁ

SOURCES
CODE
C
PASCAL Gennernic Attributes:
WEASIC
DLL
DOCUMENTS
LATEX
WORD
ASCI
MAKEFILES
WEMAK
[es,] WEMAK,
AHIES

PANIES
Uik genneric attribute value SYSTENA being selected
VYalues:

m INESE
£

558

available genneric attributes values

HOTEMPLATET GET ALL CLASS="COMPAMNIES" I;l

Screenshot 1.2: Choosing the value SYSTENA for the generic attribute NAME.

S0UR — S0ftware Use and Reuse - [IQS — Intelligent Query System]
dit Gesrsh Mode Histsry Display Window Help

| [@]2]

oo

Make Query
bl Classes:
w5
35

&]
PROJECTS ﬁ

= SOURCES
s |2

C

PASCAL Gennernic Attributes:
WEASIC
DLL ADDRESS 1+
DOCUMENTS CLASS 1
LATEX T¥PE =
m WORD SCOPE
s 5] ASCI ALLOCATION
was MAKEFILES INSERTDATE
WEMAK LASTMODIFY
LASTLOOK -
NMODIFY X +

remaining genneric attributes

HO TEMPLATE] GET ALL CLASS="COMPANIES" AND GENMAME="MAME" AND Iél
| GET ALL CLASS=¢classy <aAtrbuteDeszcrption]:>*

Screenshot 1.3: Remaining generic attributes.

Filtering could now proceed by chosing another generic attribute or user
defined class attribute or facet, and the respective value. If one decided to
terminate the query (by pressing the CHECK button), a table with some basic
information about the objects found would be presented, as depicted in
Screenshot 1.4.

At that state, it is also possible (and most of the times, desirable) to call the
Result Manager in order to show in a graphic way the objects and some specific
information related (the procedure to do that is the same as the one for a
temporary solution or for any query kept by the History; this facilitie will be
explored at section ??).

Note aso that it is aready possible to make a non-Kernel query because
once the previous query terminated successfully, the History is no longer empty.

S0UR — S0ftware Use and Reuse - [IQS — Intelligent Query System]

Ak |40

=| File §£##% ZHesrchk Mode History Display Window Help
EuEE
Menu History enabled (History not empty)
I Results
‘i’% Hame Class: Type: Inserted By
SYSTEMA COMPANIES Laogical Object ik

results of the query:

#0 TEMPLATEL GET ALL CLASS="COMPANIES" AND GENNAME="NAME" AND GENVALUE="SYSTENA"

(History not empty)

Template5 to Template8 buttons enabled E

Screenshot 1.4: Results table.

Template2 demo

Similarly to Templatel, Template2 queries also start by choosing a user
class from the USR class hierarchy, but this time just after having pressed the
Template? button. The refinement of the resulting objects will be based not only
in generic attributes, user defined class attributes or facets, but also in the
specification of a software life cycle or one or more software life cycle phases.

Note that because the ERA layout does not provide for the association of an
object with a certain software life cycle phase, what really happens when
choosing a phase is the implicit refinement of the present query solution by the
cycle(s) containing that phase. Also, if one decides to refine the objects by
directly choosing a software life cycle, then no future refinement by software life
cycle or software life cycle phase(s) should be alowed, once the ERA schema
also prevents an object from having more than one software life cycle associated.

Screenshoot 2.1 presents the Template2 front-end concerning the
interactive solving of the query #1 TEMPLATE2 GET ALL CLASS="USERS' AND
SLCNAME="ANALYSI S AND DEVELOPMENT", intended to retrieve the objects
belonging to the USERS class and associated with the software life cycle
ANALYSI S AND DEVELOPMENT. Screenshoot 2.2 shows those objects.

S0UR — S0ftware Use and Reuse - [IQS — Intelligent Query System]

Ak |40

=| File §£4% Hesrch Mode Histery Display Window Help
EDEE
Software Life Cycles Phases button
‘_g _Mak;i::: Software Life Cycles button
u

“USR

|
~PROJECTS |‘®|‘|‘Q
~SOURCES
CODE E
C

PASCAL Software Life Cycles:
WEASIC
DLL
DOCUMENTS
LATEX

WORD
ASCI
MAREFILES
tVCMAK

YEMAK
~COMPANIES WATERFALL

available Software Life Cycles

Itﬂ TEMPLATEZ GET ALL CLASS="LISERS" lél

Screenshot 2.1: Refining by the ANALYSI S AND DEVELOPMENT Software
life cycle

S0UR — S0ftware Use and Reuse - [IQS — Intelligent Query System]

Ak |40

=| File §£##% ZHesrchk Mode History Display Window Help
EaEE
 Results
‘-’% Name Class: Type: Inserted By
L -
ino USERS Lagizal Object]
- frnm USERS Logical Object f
il |5 fin USERS Logical Object f \/
e anr LUSERS Logical Object uf
thrunialti UUSERS Logical Object wf

Screenshot 2.2: fina results of the query #1 TEMPLATE2 GET ALL
CLASS="USERS" AND SLCNAME="ANALYSI S AND DEVELOPMENT".

An dternative way of getting exactly the same results as the previous query
would be to select the objects by choosing one or more software life cycle
phase(s), these phases exclusively belonging to the cycle ANALYSIS AND
DEVELOPMENT. Screenshoots 2.3 to 2.? illustrate this procedure.

Screenshoot 2.3 shows the choosing of the software life cycle phase
PHASEL from the union of all the software life cycle phases belonging to al the
software life cycles remaining.

By choosing a particular software life cycle phase, one can expect to keep
in the query solution only the objects for whom there are software life cycles
associated and containing that phase. In this context, it is logical to preserve in
the software life cycles list only the cycles containing that phase, as well it is also
logical to keep in the software life cycle phases list only the remaining phases
(note that the phase just choosen will not be considered anymore), contained by
those cycles.

Screenshoot 2.4 shows that, after the Screenshoot 2.3 procedure, the only
software life cycles that contained the phase PHASE1L were ANALYSIS and
ANALYSI S AND DEVELOPMENT.

S0UR — S0ftware Use and Reuse - [IQS — Intelligent Query System]

Help

oo

| [=]2]

L
LM

aE,
=
SEE

]
Ve

e,
=
dme

E

& (& E

Make Query

Classes:

LSk
FROJECTS
SOURCES
CODE
C
PASCAL
YBASIC
DLL
DOCUMEMNTS
LATEX
WORD
ASCI
MAREFILES
WEMAK
YEMAK
COMPANIES
LUSERS

LIENE

Software Life Cycles Phases:

PHASEZ
PHASE3
PHASE4
PHASES

I
available Software Life Cycles Phases

|tl2 TEMPLATEZ GET ALL CLASS="LISERS"

B3

| GET ALL CLASS=¢classy <aAtrbuteDescrption:*

Screenshot 2.3: filtering by the software life cycle phase PHASEL.

S0UR — S0ftware Use and Reuse - [IQS — Intelligent Query System]

sarsk Mode

sty Display Window

Help

oo

| [@]2]

Make Query

Classes:

UsR
PROJECTS
SOURCES

CODE

C
PASCAL
YBASIC
DLL
DOCUMEMNTS
LATEX
WORD
ASCI
MAREFILES
WEMAK
YEMAK
COMPANIES

e

@®

Software Life Cycles:

AMALYSIS

AMALYSIS AMD DEVELOPMENT

Software Life éycles available
after choosing the Phase PHASE1

|tl2 TEMPLATEZ GET ALL CLASS="ISERS" AMD PHAMAME ="PHASET"

B3

Screenshot 2.4: available software life cycles after refining by PHASEL

S0UR — S0ftware Use and Reuse - [IQS — Intelligent Query System]

Ak |40

=| File §£4% Hesrch Mode Histery Display Window Help
EDEE
r Make Query
‘i’% Classes:
TUSR o
#E0 =@
bl ~SOURCES
g CODE \/
= C
PASCAL Software Life Cycles Phases:
YWBASIC
DLL
DOCUMEMTS PHASE4
LATEX PHASER
WORD
ASCI
MAKEFILES
FVTHAK X
YBMAK
—COMPANIES
= 105 — Intelligent Query System
The selected Soft. Life Cicle Phase has only one Soft. Life Cicle
® associated. Further refinement by Soft. Life Cicle(s] or Soft. Life @
Cicle Phase[s] is worthless. o

|ﬂ2 TEMPLATEZ GET ALL CLASS="ISERS" AMD PHAMAME ="PHASET" lél

Screenshot 2.5: refining by PHASES3, after refining by PHASEL

At this point, it should be obvious that filtering by a certain software life
cycle phase is the only way to choose objects simultaneously belonging to more
than one software life cycle, these cycles being the ones containing that phase.
However, if theres only one software life cycle containing the phase just choosen,
then, this is equivalent to explicitly select that cycle. This is what happens at
Screenshoot 2.5, were the phase PHASE3 is choosen (among the phases
remaining from Screenshoot 2.3) and actualy only the cycle ANALYSI S AND
DEVELOPMENT contains that phase.

Althought not presented here, the solution to the query

#2 TEWMPLATE2 GET ALL CLASS="USERS" AND PHANAME="PHASE1" AND
PHANAME.=" PHASES"

is the same as to the query

#1 TEMPLATE2 GET ALL CLASS="USERS' AND SLCNAME="ANALYSI S AND
DEVELOPMENT" .

presented at Screenshoot 2.2.

