
A Mobile Agent Manager

Rui Pedro Lopes1, José Luis Oliveira2

1. Polytechnic Institute of Bragança, ESTiG, 5300 Bragança, Portugal
rlopes@ipb.pt

2. University of Aveiro, , DET, 3810 Aveiro, Portugal
jlo@det.ua.pt

Abstract: Friendliness on user interfaces has been mostly forgot in mobile
agent research. In fact the multitude of problems that have to be solved have
left this more “simple” piece of the package out of target. However, the
success of technology comes also from this important layer in the product
development.
This paper describes an application that integrates monitoring data from the
mobile agents environment, process and presents information in different ways
according to different user requirements and allows the user to remotely
control mobile agents entities.

1 Introduction

A mobile agent (MA) is a piece of software that is able to migrate from a
particular environment to some other remote site where it can execute a specific
function (system configuration, information gathering, ...) and then migrate to other
systems in order to continue its job [1].

To accomplish this scenario, mobile agents do require runtime platforms to
provide them with the necessary resources they need to operate and to migrate.
Besides, this support system must also handle agents' life-cycle, security issues and,
some times, additional services like multi-agent communication or coordination.
This infrastructure is known as the agent system (AS) or agency, according to a well
accepted nomenclature, and it is developed as an operating system extension.

From a more conceptual view, the typical role of a mobile agent is to perform an
action in the representation of some entity, person, service or agent. The definition of
its role is typically embedded in the agent code but its itinerary can be statically or
dynamically defined by the owner/user or, using its own initiative and according to
collected data, it can infer the following movement. During the mobile agents
navigation there are several problems that can arise related to communication, access
control, agents rights, agencies accessibility, just to name a few. In this context, the
user should be able to monitor and control what they are doing, individually or as a
community, and to change its behavior whenever it is necessary.

One of the problems with current mobile agent systems is the considerable
difficulty in maintaining a large, distributed and remote infrastructure. The absence
of standards for agent systems APIs (Application Programming Interfaces) limits or
even eliminates the possibility for interoperability between different vendors'
products. This also means that the tools available for monitoring and management
are proprietary. However, it is important to monitor and control the infrastructure to
conduct performance evaluation and performance tunning, fault

© Springer-Verlag

recovery/diagnostics, early detection of error or lapses on the overall service and
load-balancing [2].

As agents work all over the network, the user must know what is going on
globally and what is the impact on the network and on the agencies. He should be
provided with information such as:

• What is the navigation plan of an agent? From where did it come
and to where is it going?

• What is it doing?
• Where are the agencies geographically located?
• Which one is the most visited agency on the network?
• What is the CPU usage on every agency?
• How much time does this agent spends in each agency?
• What is the relation between the agency load and the number of

mobile agents currently visiting it?
The user interface provided by some agent system (AS) is usually based on the

File Manager paradigm which is insufficient to transmit an adequate and rich idea
about the state of the mobile agents as individuals or as a community, the relations
among them and the impact that they are causing in the network resources. Such
paradigm is useful for structuring static information and for accessing hierarchical
structures that do not change frequently, such as region information – the mobile
agents directory service, agent systems and places –, but they cannot cope with
several and very dynamic parameters. It may be adequate to represent the entities
inside the AS, however how could this tree-like view show agents appearing and
disappearing as they are created and destroyed? How could it show where migrations
happens the most? Moreover, migrations would not show up until the user opens a
branch (by clicking on the '+' sign for instance). It is also very difficult, if not
impossible, to represent past and future information (where did this mobile agent
come from? Where is it going to?).

The research around MA have not taken to much attention on the user interface.
In fact, most of the past problems come from technical operational constraints and
from the search for adequate application scenarios. Even the agent systems
interoperability has not been too important on the last years research. However,
mobile agents already have a role in the computing and communication market and
the credibility of this technology will increase as solutions for interoperability,
security assurance and friendly management will appear.

This paper presents a visual-oriented manager that helps to control mobile agents
execution and navigation across multiples agencies and regions.

In order to present information in an intuitive user interface it is necessary to
retrieve data from the agent system. Good sampling strategies and a well planned
information system are necessary to avoid overcharge of the network bandwidth and
computational resources. This subject will be detailed in section 2. In section 3 we
describe a graphical user interface that can represent geographical information
together with MAs and agent systems working parameters. Its main characteristic is
the possibility to show, in an integrated view, the overall system operation. Finally,
in section 4 we present some implementation details, followed by some conclusions.

© Springer-Verlag

2 Mobile Agents Information System

The information system behind the operation of a mobile agent infrastructure is
structured in two main parts. One is related to the services provided by the agents,
such as the operations they perform, the itinerary they have or their current state; the
other is related to the parameters that represent behavior, such as “where they are” or
“what are they doing”. From the user perspective, the former is meaningful for
defining mobile agent based operations and the later is useful for infrastructure
management purposes.

When agents are migrating and therefore changing their location repeatedly, the
user may have more difficulty in maintaining an updated and accurate knowledge
about where they are and what they are doing. The task of monitoring a distributed
environment is more complex than the task of monitoring a single host or
application. The number of AS can easily rise to dozens or hundreds and the
performance of the systems depends on several factors including the network
throughput and topology. It is important not to overload the network with the
sampling mechanism but it is also important to avoid loosing resolution by using an
insufficient sampling frequency [3].

The information system should be as generic as possible to allow using a broad
set of mobile agent systems, regardless of the technology and vendor. The Mobile
Agent Facilities (MAF) of the Object Management Group (OMG) provides such
generalization and is a good starting point [4].

2.1 Information type

The user has access to the mobile agent infrastructure by retrieving and sending
information. The information allows him to start operations as well as to check on
how things are going. To design the information system we started the user
requirements by enumerating the operations that should be available to the user.

The first condition was the integration of facilities of agent systems coming from
different vendors. The user should be able to start jobs or tasks with specific paths or
services. This means that the user should be able to create mobile agents and to
provide them with appropriate arguments – even if the operational constraints of an
agent framework avoids its agents to run in different systems (it will be confined, in
this case, to the agencies of the same kind). He should also be able to monitor the
agent location and to suspend, resume or terminate the agent operation.

Tracing and changing the agent's path in real time is also an important feature.
This allows the user to keep a record of past and foreseen movements. To maintain
this information accurate, it is necessary a) some notification mechanism or b)
continuous polling on the agent location. The later may require large bandwidth to
work properly. If the number of migrations per second between two agencies, which
we call the connectivity between agencies, is high, this means that both agencies play
an important role for the operation being performed by the mobile agents or that
something is wrong with the paths they should be walking.

There are also some other useful parameters to evaluate the behavior of the
agents. These are the CPU load of the host where the agencies are located, the
number of mobile agents currently sharing an agency and the number of static
agents. These values should be possible to correlate, to make it possible to take

© Springer-Verlag

decisions on the capacity of the host to support the number of agents to the available
processing power. It is also important to store historical information about these
parameters so that we can present to the user their evolution and to compare past
with current values.

MAF is a collection of definitions and interfaces that provides generic access to
mobile agent systems. It uses OMG IDL to declare two interfaces, which define all
the operations on the agent system and on the region: the MAFAgentSystem and the
MAFFinder. They can be used to provide vendor and platform independence [5].

Table 1presents a summary of the information system as well as the available
methods to get/set the information.

Table 1. Summary of the operations associated with the information system

User Operation Available method

Create agents MAFAgentSystem::create_agent()

Monitor agent location MAFFinder::lookup_agent()

Suspend, resume agents MAFAgentSystem::suspend_agent()

Resume agents MAFAgentSystem::resume_agent()

Terminate agents MAFAgentSystem::terminate_agent()

Trace agent movement Callback, notification or event mechanism (Proprietary)

Explicitly change the agent
path

The user must change the agent state and desire
(Proprietary)

Agency connectivity Results of the ratio between migration tracing and time

CPU load Operating system query (Proprietary)

Number of MA in the agency MAFAgentSystem::list_all_agents()

Number of static agents MAFAgentSystem::list_all_agents()

In addition to changing values, there are also several sampling operations that
must be performed periodically to build the information system. The next section
focuses on this subject in grater detail.

2.2 Sampling and changing

For the agent infrastructure to be contacted, either for retrieving values or for
changing parameters, it is necessary to provide a common mechanism that both
parties share. Moreover, it was decided that the mechanism should be independent of
the agent system technology and vendor, perform automatic measurements and
provide a minimal impact on network and computational resources. A further
desired feature is that the sampling could be performed periodically or on demand
based on a specific event. This requires time stamping every measurement so that it
can be appropriately correlated with past and with related measurements.

The communication depends on two characteristics: the syntax – the way
information is transported, and the semantics – the meaning of the information.
Agent system communication is usually performed through an API which allows

© Springer-Verlag

remote, high level access to the system parameters. This API is seldom standard but
there are several standard protocols and models that can be used, such as SNMP
(Simple Network Management Protocol) [6][7], CORBA [4] or other, since the agent
system supports them (Fig. 1).

The communication mechanism must follow the syntax defined by the agent
system. Semantics has to do with the meaning of the information and implies some
kind of processing. Some parameters are usually more meaningful if processed
before being consumed. For example, the number of migrations between two
agencies is not meaningful unless associated with time information. Saying that
2312 migrations occurred between two agencies is not meaningful until we say “in
the last 20 seconds”. Other parameters may be meaningful by themselves, such as
processor load or the number of mobile agents currently parked at an agency. This
makes us foresee two kinds of sampling: absolute – the sampling value corresponds
to the retrieved value – and delta – the sampling value corresponds to the difference
between the current and the previous values.

The information is presented to the user in a single location, so it has to travel
there at least once. However, centralized sampling may have some scalability
problems, related to the network latency, overhead and resource usage.

After having the sampling values, sometimes it is necessary to perform some kind
of processing to correlate them or to further enhance its meaning. This requires
processor power and may also represent another scalability problem.

To cope with these problems, we suggest a distributed sampling mechanism
based on mobile/static agents [8]. This should be seen as a dynamic tree of delegated
sample processors. Their responsibility is threefold:

• Resolve syntax problems by defining a gateway between the
management application and the agent system;

• Maintain a log of previous samples to provide historical
information and to allow the remote processing of information;

• Perform basic processing operation on sample values.
The latter is seen as semantic compression because it extracts meaning of the raw

data thus reducing the amount of information transmitted to the management

© Springer-Verlag

Fig. 1. Sampling mechanism

...

CORBA

SNMP

Agency

Operating System

Communication mechanism

User interface

...

CORBA

SNMP

Agency

Operating System

...

CORBA

SNMP

Agency

Operating System

...

CORBA

SNMP

...

CORBA

SNMP

...

CORBA

SNMP

console. To further cope with latency and to help saving network resources, the
distributed samplers perform data compression by applying a lossless compression
algorithm to the information before transmitting it (Fig. 2).

The hierarchy of distributed samplers defines several “islands” of independent
sampling, thus reducing upper level network load and making possible the
distribution of processing load among them.

The distributed sampler (DS) has the responsibility of sampling, logging and
processing raw information retrieved from the agencies. The sampling operation
requires it to retrieve values from the agencies by using a specific syntax and
associates them with a time-stamp. The value is then logged to an internal database
with user defined capacity based on time (space to store the values retrieved during
two days operation) and on the number of samples (space to store one thousand
samples). Finally, the information processing requires the DS to apply some kind of
algorithm or mathematical expression to the logged values. One such operation is the
evaluation of the difference between two consecutive samples: delta. Another feature

© Springer-Verlag

Fig. 3. Architecture of the Distributed Sampler

Distributed sampler

SNMP CORBA ...

Callback

Sampling
Logger

Agency
Listener

Sample
processor

DS Interface

Retrieve
sample

Register
callback

Send
callback

Fig. 2. Distributed sampling mechanism

CORBASNMP

SNMP

Agency

CORBA

Agency

CORBA

Agency

CORBA

Agency

SNMP

Agency

Distributed
sampler

User interface

Distributed sampler

Distributed
sampler

the DS should have is the possibility of registering callbacks to be notified when
some value changes (Fig. 3).

In other words, the DS is a mobile agent with the capability of carrying different
sample processors, a logger and different sampling mechanisms. This is easily
achieved by defining attributes with the type of some base class and then initialized
with an instance of the desired mechanism, such as SNMP or CORBA.

3 Graphical Elements

Graphical elements are used in the communication between applications and
users. In the context of mobile agents the user may interact with the agents in two
scenarios:

a) for introducing and retrieving information on mobile agents and
b) for managing agent systems.
In the first variant mobile agents interact with the user and, as such, they present

a user interface for receiving user input. This situation introduces problems related to
the agent platform nature and its capabilities as well as with the role of the user. If
the agent is running on a regular PC, it can show up graphical windows; if it is
running in a WAP terminal, it can show up WML (Wireless Markup Language)
pages. The agent should also adapt the user interface according to the user role and
permissions. For example, the system will present different features to a nurse and to
a doctor. In other words, user interfaces to mobile agents should change the way they
look according to were they are and to whom they are speaking to [9][10].

Agent system management, on the other hand, requires a specific application to
monitor and control the operation of agents and agencies that will be based on the
infrastructure information system. Almost every known MA implementation
provides simple tools for controlling the agent life-cycle and for creating and
destroying agents as well as places. However, the management of the supporting
infrastructure, namely the agencies and hosts' resources, is usually marginally
considered or not considered at all. Some related work focused on these problems at
the API level but disregard the user interface level [11].

Each agency is characterized by a chart showing three parameters: the CPU load,
the number of mobile agents and the number of static agents. The chart shows a set
of values to build an idea of their evolution. When a new value arrives, the chart is
updated by dislocating the values to the left (Fig. 4).

© Springer-Verlag

Fig. 4. Chart showing the processor load (gray area), the number of static agents (light
gray) and the number of mobile agents (dark gray)

The main window has a search mechanism on the left which is used to locate the
agencies registered in a specific region. The agency list below allows the user to
position them by drag and drop on the map on the right. Then he can establish the
sampling parameters for each one of them and start collecting values from the
agency. A multi tabbed panel shows several layers which can represent a building
floors, for example.

To get the full picture of the agents' and agencies' details, it is most useful to
associate their position to a geographical map. The map may serve as background for
the agencies and agents thus allowing the user to position them according to their
location. A more complex scenario may include the tracing of mobile agencies
together with a user location service to visualize, for example, the agency installed in
his PDA or mobile phone (Fig. 5).

In addition to these values, the interface also shows the connectivity between
agencies. This parameter is measured as a rate of migrations between agencies,
resulting from the evaluation of the number of migrations to a period of time. This
value is then normalized as a percentage of all the migrations monitored and
presented as lines. Different widths represent the relative percentage of migrations.
The heavier the line, the heavier is the agent traffic between the connected agencies
(Fig. 6).

© Springer-Verlag

Fig. 6. Connectivity between agencies

Fig. 5. User interface to the mobile agent infrastructure

To examine the details of agents and agencies, the user may call an explorer like
tool [6]. The MAF Explorer follows the file manager paradigm with a tree view on
the left and the content panel on the right. On the right side, it shows the details of
the place or the agent, as selected on the tree. The grayed labels indicate that the
parameter is read only. As an example, the user cannot modify the agent location,
although the agent may move autonomously. A black label indicates that the user
may also change its value. The agent status may be altered to suspend, resume or
terminate its running status (Fig. 7).

4 Implementation Details

The system is still being implemented at the time of writing of this paper,
although some of the intended functionality is already working. Mobile agents
support is provided by IKV's Grasshopper agent platform [12] and we are using the
Sun's mapping of CORBA included in the J2SE [13] for the instrumentation objects.

The mobile agents information system is populated by the MAF interfaces and
specific IDL interfaces to provide access to host instrumentation data. It was defined
an IDL interface to define the mechanism to deal with host information and to
implement the distributed callbacks mechanism. Data such as CPU load is retrieved
from the agency host by a CORBA server object which also accept the registration of
callback objects, so we have a scenario of mobile agents/CORBA to get all the
information related to the navigation management system.

The monitoring system has to register a callback by acquiring a reference to the
server object and then invoke the register(callback) method with a reference
to the callback object. From this moment on it will be able to receive notifications.

© Springer-Verlag

Fig. 7. Agency explorer

5 Conclusions

In this paper we presented the approach, design and implementation issues of a
mobile agent navigation manager. We discussed several related issues such as the
mobile agent information system, the sampling strategies behind it and the set of
graphical tools that build an intuitive graphical user interface.

Through the interface, the user will get access to the mobile agent system
operation parameters and he will be able to start new tasks, modify existing ones and
access information about how the system is working. We also presented concerns
with the interoperability between the navigation manager with different vendors'
mobile agent infrastructures by providing an all CORBA “driver” to the host and
agency information.

References

1. Pham, V., Karmouch, A., "Mobile Agents: An Overview.", IEEE Communications
Magazine, 1998.

2. Ibbotson, R., Gibbard, B., Stampf, D., Throwe, T., "A Mobile-Agent Based
Performance-Monitoring System at RHIC", International Conference on Computing in
High Energy and Nuclear Physics, Padova, Italy 2000.

3. Tierney, B., The Distributed Monitoring Framework (DMF), http://www-
didc.lbl.gov/DMF/.

4. OMG, Mobile Agent Facility Specification, ftp://ftp.omg.org/pub/docs/formal/00-01-
02.pdf.

5. Lopes, R., Oliveira, J., "SNMP Management of MASIF Platforms", proc. of the
IFIP/IEEE International Symposium on Integrated Management - IM'2001, Seattle 2001.

6. Lopes, R., Oliveira, J., "Multi-management Schemes for MAF Platforms", proc. of the
Fourth International Workshop on Mobile Agents for Telecommunication Applications
(MATA'2002), 2002.

7. Simões, P., Silva, L., Boavida, F., "Integrating SNMP into a Mobile Agents
Infrastructure", proc. of the Tenth IFIP/IEEE International Workshop on Distributed
Systems: Operations & Management (DSOM'99), 1999.

8. Bohoris, C., Pavlou, G., Liotta, A., "A Hybrid Approach to Network Performance
Monitoring Based on Mobile Agents and CORBA", proc. of the 4th International
Workshop of Mobile Agents for Telecommunications Applications - MATA'2002, 2002.

9. Braubach, L., Pokahr, A., Moldt, D., Lamersdorf, W., "Using a Model-based Interface
Construction Mechanism for Adaptable Agent User Interfaces", proc. of AAMAS
Workshop 16 - Ubiquitous Agents on Embedded, Wearable, and Mobile Devices, 2002.

10. Silva, A., Silva, M., Romão, A., "User Interfaces with Java Mobile Agents: The
AgentSpace Case Study", proc. of the First International Symposium on Agent Systems
and Applications Third International Symposium on Mobile Agents, 1999.

11. Simões, P., Marques, P., Silva, L., Silva, J., Boavida, F., "Towards Manageable Mobile
Agent Infrastructures", proc. of the International Conference on Networking - ICN'01,
Colmar, France 2001.

12. IKV++, Grasshopper Mobile Agent platform, http://www.grasshopper.de/.
13. Sun, Java 2 Standard Edition, http://java.sun.com/j2se/.

© Springer-Verlag

