
AGENTAPI: AN API FOR THE DEVELOPMENT OF MANAGED
AGENTS

Rui PedroLopes
Escola Superior de Tecnologia e de Gestão, Instituto Politécnico de Bragança, Bragança, Portugal

Email: rlopes@ipb.pt

José Luís Oliveira
Departamento de Electrónica e de Telecomunicações, Universidade de Aveiro, Aveiro, Portugal

Email: jlo@det.ua.pt

Keywords: Network Management, SNMP, Agent development

Abstract: Managed agents, namely SNMP agents, costs too much to develop, test and maintain. Although assuming
simplicity since its origins, the SNMP model has several intrinsic aspects that make the development of
management applications a complex task. However, there are tools available which intend to simplify this
process by generating automatic code based on the management information definition. Unfortunately, these
tools are usually complicated to use and require a strong background of programming experience and
network management knowledge. This paper describes an API for managed agent development which also
provides multiprotocol capabilities. Without changing the code, the resulting agent can be managed by
SNMP, web browsers, wap browsers, CORBA or any other access method either simultaneously or
individually.

1 INTRODUCTION

Research communities frequently tend to
consider the development as the less noble phase of
the research timetable. In this scenario, software
development in particular is largely seen as a simple
engineering task and typically do not capture too
much attention. However, the synergy between
development and the project modeling frequently set
up interesting issues that are underestimate in the
analysis and in the architectural phases.

SNMP products have been around for a decade
and have conquered the market for network and
system management. While the maturity of products
and the increasing acceptance of this protocol have
spread the idea that the research on this mater is
more or less stable, the development of products
from scratch shows that this is in fact a
misconception.

The early motivations for our study were centred
on the topic “distribution management and SNMP”.
This goal led us to the evaluation of documents and
proposals for several IETF charters (like the

Distributed Management charter) (DISMAN) and to
propose new solutions related to the distribution of
management tasks. On this trail, and since most of
the proposals did not presented yet any
implementation, we decided to develop several MIB
modules in order to have a solid knowledge of what
was under assessment. Examples of the performed
work are the Schedule, Event and Expression MIB
(Lopes, 2000) modules of DISMAN and the MAF-
MIB defined to deal with mobile agents under
SNMP (Lopes, 2001).

While some results from this research have been
written and presented, we realize that a main piece
of the work was taking little attention. In fact it was
mainly a development feature – although crucial
within the overall architecture. This paper presents
the AgentAPI, that is:
• an Application Programming Interface that

simplifies the development of SNMP agents;
• beyond SNMP, a multi-protocol agent builder

(HTTP, RMI, CORBA);
• a persistence capable API;
• an embedded SMIv2 parser;
• an open source software, with a reasonable

acceptance on this area (AgentAPI).

2 AGENT API

Usually, the development of SNMP agents is
ruled by the following procedure:
1. Define or retrieve the MIB definition in SMI.
2. Generate the source code (mostly C, C++ or

Java) correspondent to the MIB module through
a specific MIB compiler.

3. Update the generated source code with the agent
functionality (programming).

4. Compile, test and deploy the SNMP agent.
At the time of the initial development, the tools

which generate Java source code where sparse and
many required commercial licenses. It was not
possible to find a reasonable public domain tool and
the available commercial tools were simply too
expensive. Moreover, typically, its functionality was
not clearly defined.

The available tools generate large and
monolithic code (i. e., a single source file for each
SMI file, sometimes mixing similar but unrelated
management concepts) which results in increasing
difficulties for the programmer. On the other hand,
the tools are usually dependent on the SNMP stack.
The use of other protocols or access methods is not
easily achieved without gateways, proxies or explicit
programming.

To cope with these difficulties we decided that a
specific, full featured API for the development of
management agents was required. In substitution of
a MIB compiler, the programmer should be able to
develop an agent by extending classes and invoking
methods on a software layer which provides all the
common, low level aspects, such as protocol
message processing, agent extension, managed
object identification and others. In fact, this strategy
is already commonly used in GUI and client/server
APIs (HTTP servers, database access, Peer to Peer
applications).

2.1 Design decisions

The fundamental design goal was that it should
be easy to use. This would allow reducing the
learning time and provide an excellent tool to be
used by students. In other words, it should be simple
and straightforward even to inexperienced
programmers. Mapping specific management
concepts such as ‘agent’, ‘agent object’, ‘MIB table’
and others as classes in an object oriented language
reduces the gap between theoretical concepts and
practical development.

The agents built around the AgentAPI should be
accessible by SNMP in all the three versions:
SNMPv1, SNMPv2c and SNMPv3. Because we did
not want to develop the SNMP stack (there are

several high quality implementations available either
commercially and in public domain such as
JoeSNMP, Westhawk, ModularSNMP or AdventNet
SNMP stacks), we provide an interface between the
AgentAPI core functionality and the SNMP stack,
thus achieving version independence.

We also required that we could build sub-agents
through the AgentAPI, connected to master agents
by an extensibility protocol such as AgentX
(Daniele, 2000). This choice would allow integrating
new agents into existing SNMP agents.

Continuing the list of requirements, we also
wanted direct agent access through regular Web
browsers thus allowing the manager to retrieve and
modify management information anytime,
anywhere. Moreover, some minor changes allowed
us to extend the access method to other devices,
such as WAP browsers. This approach helps solving,
on one hand, the restricted access to network
management console by diversifying the access
along a multitude of terminals, including handheld
devices. On the other hand, we also aim at reducing
the dependence of management operations (SNMP
requests) on a central management system through
the adoption of distributed management
mechanisms.

This multitude of access methods requires a
design that is able to support several others protocols
or access methods, such as Java RMI (Remote
Method Invocation) and CORBA.

Regardless of the access methods, the AgentAPI
core should be able to manage all the common agent
mechanisms, such as object management (ordering,
creating, removing and activating managed objects)
as well as allowing object persistency.

2.2 Architecture

The model is structured in two main parts: one
related to the user interface and the other devoted to
the agent side (Figure 1).

A broad set of protocols can be used both on the
manager and on the agent side. For instance, if web-
oriented interfaces are a must the system can benefit
from using the HTTP protocol. To maintain
compatibility with traditional network management
stations any SNMP version or AgentX can be used.
The shaded blocks constitute the parts of the
architecture that were developed and that belong to
the API.

On the agent side, regardless of the intrinsic
operational differences and the access protocol, the
implementations share some common features such
as persistency, security and command identification
and processing. These operations are grouped into a

transversal block used by all MIB modules, thus
improving code reusability and organization.

Figure 1: AgentAPI high level architecture.

The proposed model separates the API in two
layers (Message Adapter and Agent Information) in
order to allow different protocols and information
structures.

The Agent Information module contains the
instrumentation part of the agent, which follows the
SMI description of required MIBs. This information
store defines how protocol commands are mapped to
platform operations, by modifying or retrieving
working parameters. For example, sysDescr is
defined as read-only and returns a “textual
description of the entity”. If the agent receives a
command to modify this object’ s value it will not be
allowed.

The Message Adapter consists of an adaptation
layer that allows using different protocol stacks to
access the same instrumentation information. To
achieve this, the Message Adapter registers itself as
a “protocol listener” in each communication module
(HTTP engine or SNMP stack, for example).

Finally, on the top of AgentAPI, the
Communication Modules are created according to
the user requirements. For example, an agent using
exclusively SNMP will only need the SNMP stack –
this is the normal SNMP agent. Other agents may
require other protocols, such as HTTP, SSL, RMI,
CORBA and so on.

The resulting set of classes implement common
managed agents’ aspects. The agent is then built
through the specialization of the base classes (Figure
2).

An agent in the context of the AgentAPI is a
specialization of the core class (AbstractAgent)
which uses a binary tree structure to store references
to agent objects (AgentObject). It is also maps these
references to OIDs (Object Identifiers) which
provides the correspondence between managed
objects and memory objects. The tree structure has

higher efficiency for “walk” operations than arrays
or hash tables due to the OID ordering scheme.

Figure 2: AgentAPI core class diagram.

The managed objects may be specializations of
three kinds of classes: simple objects, node objects
or SNMP tables. Every object inherits the SNMP
related set of operations from AgentObject and
introduces a new set, therefore providing the
specialization required by the MIB module.

Table objects are not intended to be derived
(although permitted). To drive the table behavior a
TableModel may be used. It defines the columns type
and number, validates the information and generates
a repository object for each row of data
(TableProvider).

The interface MessageListener is the responsible
for defining the methods used in the communication
between protocol engines and the agent. Any class
which implements this interface can be used as a
communication engine. The agent also implements
the same interface, allowing bi-directional
communication.

2.3 Data transformation

It was already mentioned that the AgentAPI
provides the mechanisms to allow simultaneous
access through several protocols, including HTTP.
With a careful data transformation the HTTP client
can be a regular Web browser or a WAP browser
through a gateway usually residing at the Internet
Service Provider (We have an online demo of HTTP

access. Try http://nms.estig.ipb.pt/see/disman to
browse the agent through a common Web browser
and http://nms.estig.ipb.pt/see/disman?wml=true
through a WAP terminal).

The transformation implies that the structure of
management information (MIB definition) inherent
to the agent must be somehow transformed to
HTML, WML or others. Advances in web
technologies suggests mechanisms to transform
XML code into custom code, including HTML, text
or WML by XSL transformation (XSL). To be able
to use this mechanism it is necessary to describe the
structure of agent information in XML. Moreover,
past IETF work focuses on defining a Document
Type Definition (DTD) to allow XML parsing
applications to read or edit original SMI definitions
(Schoenwaelder, 2000).

We have build a communication module where
the XML definition is complemented with a XSLT
post-processor that dynamically generates
management views in a format that is the best suited
for the client’ s interface (). Naturally this strategy
implies larger agents. However, the price is
acceptable when dealing with complex agents where
the overcharge is negligible and when it is important
to have ubiquitous access to agents.

Figure 3: XSLT processor on SMI information

architecture.

The communication module has as input two
sources: SMI files for the agent MIB structure and
the agent information for the values. This joined
information is converted to XML by the XML
Generator and is then forwarded to the XSLT
Processor. The XSL sheets provide the guidelines
for transforming the common XML input to
different output documents, such as HTML, WML
or VXML. The result is then sent to the embedded
HTTP server.

The IETF’ s DTD definition, provided to
represent the MIB structure in XML, does not define
a tag to specify the value of MIB objects
(Schoenwaelder, 2000). For the architecture
described in this paper we have included a special
tag, <value>, so that the user can have access not

only to the information structure but also to the
agent object value. The XML generator builds a
document based on SMI definition and augments the
structure with the data from the local SNMP agent.

When the user accesses the HTTP engine, a
login page shows up. This provides a minimum
security level through user authentication. After
being successfully authenticated, the user can
monitor and control (through HTML or WML
pages) the state of the agent. More security may be
achieved by using HTTP over SSL, a common
option on regular web servers.

2.4 Extra features

The AgentAPI is complemented with a very
complete and full featured SMIv2 parser which
allows converting MIB description files into Java
objects by including very simple code:
MibModule module = MibOps.load(“SNMPv2-MIB”);

To extract the information, the procedure is also
straightforward:
MibIdentity identity = module.getIdentity();

System.out.println(identity.getOrganization());

This tool is independent of the other modules
and may be removed if the agent does not need to
interpret SMI files. It may also be used in the
manager side, if it is required for some management
operation. Further programming examples are
available at the project web page (Agent API).

2.5 Resources

The presented architecture was implemented
using the Java language with several public domain
tools and utilities. For the HTTP engine we used the
embeddable web server Jetty (Jetty), which includes
also an HTTPS engine for higher security. The
Apache Foundation contributes with two modules:
the XML parser Xerces (Xerces) and the XSLT
processor Xalan (Xalan), although these may be
removed if the 1.4 version of the Java2 platform is
used. The SNMP stack is JoeSNMP (JoeSNMP) and
the AgentX implementation is JAX (JAX).

3 USAGE SCENARIOS

The following sections illustrate some
programming examples, namely, a read-only agent
object and a read-write agent object. After, the agent
is put to practice.

The following examples include the managed
objects shown in Table 1.

Table 1: Example of some managed objects.

Name Access Description
sysUpTime read-

only
The number of hundredths of a
second since the agent was
started

sysContact read-
write

A String with a contact name

3.1 Programming examples

Any managed object must derive AgentObject in
the API. So the SysUpTime java file should be:
public class SysUpTime extends AgentObject {

 long initial;

 public SysUpTime(String oid) {

 super(oid);

 initial = System.currentTimeMillis();

 }

 public VarBind get(String o) throws MessageException {

 long now = System.currentTimeMillis();

 long sysUpTime = (now-initial)/10;

 return new VarBind(getOID(),

 new Counter(new Long(sysUpTime).toString()));

 }

}

SysUpTime has a member variable to store the
time when the object is created. This object will be
used to calculate the number of hundredths of a
second since the object creation. AgentObject has an
abstract method "get". This method must be
overridden to return the appropriate result. In this
case, (now-initial)/10.

SysContact is a read-write object, so, in addition
to extending AgentObject, it must implement the
WritableAgentObject interface:
public class SysContact extends AgentObject

 implements WritableAgentObject {

 Var value = Var.createVar("", Var.OCTETSTRING);

 public SysContact(String oid) {

 super(oid);

 }

 public VarBind get(String o) throws MessageException {

 return new VarBind(new String(getOID()), value);

 }

 public VarBind set(VarBind varBind)

 throws MessageException {

 Var val = varBind.getValue();

 if(val.getType()!=Var.OCTETSTRING) throw

 new MessageException(AbstractAgent.WRONG_TYPE);

 value = Var.createVar(val.toString(),

 Var.OCTETSTRING);

 return new VarBind(new String(getOID()), value);

 }

}

Both the methods "get", from the AgentObject
class, and "set", from WritableAgentObject must be
overridden. Simple type checking is done on the
"set" method, throwing a MessageException if the
value is not a STRING.

The agent is defined with the following code:
public class TestAgent extends AbstractAgent {

 public void setObjects() {

 SysUpTime a=new SysUpTime(".1.3.6.1.2.1.1.3.0");

 addObject(a);

 SysContact b=new SysContact(".1.3.6.1.2.1.1.4.0");

 addObject(b);

 }

 public static void main(String[] a) throws Exception {

 Agent agent = new TestAgent();

 EngineFactory.start(agent);

 }

}

Finally, to launch the agent it is necessary to
compile and execute the application:
$> javac *.java

$> java TestAgent

4 TEST BED

We have validated and used the AgentAPI in
some research projects related to the DISMAN work
and management distribution by developing some
rather complex and demanding MIBs, namely the
Schedule, Expression and initial work with the
Event MIB modules. Moreover, we have used it to
implement a custom made MIB to manage mobile
agents throw SNMP and MAF (Lopes, 2001).

The AgentAPI resulted in a valuable tool which
provides common agent mechanisms such as object
ordering, command processing and multi-protocol
access. Each of the modules can be used
independently or associated with others by using a
MultiAgent facility:
MultiAgent ma = new MultiAgent();

SchedAgent sched = new SchedAgent();

MAFAgent maf = new MAFAgent();

ExpressionAgent expr = new ExpressionAgent();

ma.addAgent(sched);

ma.addAgent(maf);

ma.addAgent(expr);

EngineFactory.start(ma);

Each module has its own purpose and plays a
different role specifically tailored for a particular
situation. The Schedule MIB, for example, needs a
time clock to maintain track of the scheduling
operations. This feature is appended to the classes
derived from the AgentAPI AgentObject thus
specializing the general AgentAPI classes to build a
specific scheduling behaviour.

The Expression MIB main characteristic is the
ability to generate values according to expressions
and managed objects values. It thus depends on an
expression parser to calculate the functions and
operations values. These values are then published
in a special purpose table (Lopes, 2000).

The MAF-MIB maps MAF interfaces (MAF) to
SMI thus allowing defining a gateway between
SNMP and any compliant mobile agents’ platforms.
The agent instrumentation is performed through
CORBA method invocations which interact with the
agents’ and platforms’ life cycle. It also provides
searching capabilities to locate resources in given
regions.

All these agents provided a successful test bed to
the AgentAPI and are available for download as well
as its source code at the project web page.

4.1 Availability

Test bed results are further refined by making
the API available to the Internet community. The
AgentAPI (AgentAPI) is freely available under the
GNU Public License (GNU) including all the tools
and source code. In the year of 2002 we registered
over 1000 downloads which revels a good
community acceptance and forecasts reasonable
usage experience. We already received strong
encouragement notes by users all over the world
which reported positive usage experiences.

We would like to express our gratitude to several
users and colleagues that have contributed with
suggestions and bug corrections which helped to
increase the quality of the AgentAPI.

5 CONCLUSIONS

The development of management agents is a
complex and tedious task. The community has
already proposed and deployed several tools to help
the developer by generating code based on the
definition of the agent’ s managed objects. These
tools are usually expensive and generate large and
redundant code and are also very tied to the SNMP
model.

To cope with these difficulties we have
developed an open source, extensible API gathering
all the common agent procedures. This API is
extended to define specific agent behaviour as
defined in the MIB module. Moreover, it allows
using several simultaneous communication
mechanisms thus allowing direct access to the agent

through SNMP, RMI, CORBA, HTTP, WAP,
AgentX or other existing and future protocols.

The API has already shown it usefulness in the
development of SNMP agents but it still has aspects
that can be improved. For future work, we are
considering adding a MIB compiler to generate the
basic code and thus decreasing the development
time.

REFERENCES

DISMAN, Distributed Management Charter,
(http://www.ietf.org/html.charters/disman-
charter.html).

Lopes, R., Oliveira, J., 2000. Distributed Management:
Implementation issues. In proc. of the International
Conference on Advances in Infrastructure for
Electronic Business, Science, and Education on the
Internet – SSGRR’2000, l’ Aquila, Rome, Italy, August
2000.

Lopes, R., Oliveira, J., 2001. SNMP Management of
MASIF Platforms. In proc. IFIP/IEEE International
Symposium on Integrated Management 2001 –
IM2001, May 2001, Seattle, USA.

AgentAPI (http://nms.estig.ipb.pt/).
JoeSNMP (http://freshmeat.net/projects/joesnmp/).
Westhawk’s Java SNMP stack

(http://www.westhawk.co.uk/resources/snmp/index.ht
ml).

ModularSNMP (http://www.teleinfo.uqam.ca/snmp/).
AdventNet (http://www.adventnet.com/).
Daniele, M., Wijnen, B., Ellison, M., Francisco, D., 2000.

Agent Extensibility (AgentX) Protocol Version 1.
Internet Request for Comments 2741, January 2000.

XSL Transformations (XSLT), W3C Recommendation 16
November 1999 (http://www.w3.org/TR/xslt).

Schoenwaelder, J., Strauss, F., 2000. Using XML to
Exchange SMI Definitions. Internet Draft draft-irtf-
nmrg-smi-xml-00.txt, June 2000.

Jetty Java HTTP Servlet Server
(http://jetty.mortbay.com/).

The XML parser Xerces (http://xml.apache.org/xerces-
j/index.html).

The XSLT processor (http://xml.apache.org/xalan-
j/index.html).

JAX - Java AgentX Client Toolkit (http://www.ibr.cs.tu-
bs.de/projects/jasmin/jax.html).

MAF. Mobile Agent Facility Specification, Object
Management Group, 00-01-02.pdf
(ftp://ftp.omg.org/pub/docs/formal/00-01-02.pdf).

GNU Public License (http://www.gnu.org).

