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$EVWUDFW�
The heat transfer analysis plays an important role in the temperature prediction 
of insulated steel members exposed to fire conditions. Based on the results of a 
previous experimental work, made in intumescent-coated protected elements, the 
intumescent effective thermal conductivity temperature variation was estimated. 
An analytical approach, based on the one-dimensional heat transfer parabolic 
partial differential equation through the insulation, considering a non-
homogeneous (time-varying) boundary condition at fire interface and a lumped 
capacitance at the insulation-steel interface, is presented. Solutions are 
established with temperature independent thermal properties and then extended 
to temperature dependent thermal properties. These solutions are compared with 
numerical results performed by finite element method using Matlab for different 
values of insulations thicknesses and steel section factors. 
.H\ZRUGV�� ILUH� UHVLVWDQFH�� ILUH� SURWHFWLRQ�� LQWXPHVFHQW� FRDWLQJV�� KHDW� WUDQVIHU��
'XKDPHO¶V�WKHRUHP��*UHHQ¶V�IXQFWLRQ��

�� ,QWURGXFWLRQ�
Fire protection costs may represent an important part of global construction 
costs, being more significant in the case of steel construction, requiring 
frequently the application of an insulation material, Longton et al [1]. The use of 
passive protection materials is one of the measures normally adopted to prescribe 
structural fire resistance. Intumescent coating represents around one third of steel 
fire protection and is growing mainly due to their use in off-site applications. 



The fire resistance of an insulated steel member is determined by assessing the 
loadbearing capacity of the component during fire exposure. Heat transfer 
analysis of the insulated steel member is of great importance for determining, 
accurately, critical temperature of the protected element which depends 
essentially on the protection material properties and on the bulk fire temperature. 
The specification of the minimum protection thickness is recommended by 
manufactures. These values are based on experimental fire tests, using typical 
structural elements (beams and columns) being the reports kept confidential. The 
results are presented in form of tables or graphs, for different critical 
temperatures, protection thicknesses and different fire resistance periods. In a 
previous work, a set of experimental fire resistance tests was conducted on steel 
beams protected with intumescent coatings and the effective thermal 
conductivity was determined as function of the mean insulation temperature 
evolution, Mesquita et al [2].  
The aim of this paper is to present an analytical development that considers one-
dimensional heat transfer equation using Duhamel’s theorem and Green’s 
functions methods to determine steel temperature of protected structural 
elements. The experimental results are compared with the analytical results and 
with numerical results based on the finite element method from the PDEToolbox 
of Matlab, considering the effective thermal conductivity temperature dependent. 
The study is extended to other protection thicknesses and steel section factors. 

�� ([SHULPHQWDO�ILUH�UHVLVWDQFH�UHVXOWV�
The experimental results of full-scale fire tests, conducted on steel beams 
protected with solvent-based intumescent coating were previously published. 
Specimens have been coated and heated with a heating rate of 800 [ºC/h] and 
temperatures recorded on steel IPE100 profiles. Higher thickness of protection 
results in higher fire resistance time, increasing critical temperature. 
The tests herein considered are tests 5, 6 and 7, with dry film thickness mean 
value of 1329, 1441 and 1521 [µm], respectively. The experimental results are 
presented in the figures 3-5. 
According to the Eurocode 3 formulae CEN [3], steel temperature prediction is 
calculated using a numerical time stepping scheme, given by: 
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where ∆W≤ 30 [s] for insulated steel elements. ∆7�  and ∆7�  represent the 
temperature increments of the insulated steel and fire gas during the time ∆W. 3�$ 
is the steel section factor, while G 	  and N 	  accounts for the thickness and 
conductivity of the protection material and µ is the ratio of the heat capacitance 
between insulation and steel. ρ �  and F �  represent steel specific mass and specific 
heat. 



The inverse of eqn (1) may explicit thermal conductivity, according to 
temperature measured results on beam and on the heating source. This lead to the 
following expression: 
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The effective thermal conductivity temperature variation may be approximated 
considering a protection temperature calculated by the average value of the 
heating source and steel temperature 7 	 �L� >7� �L��7� �L���@/�, Wickström [4]. 
Figure 1 represents the effective thermal conductivity determined using the 
experimental results and eqn (2).  
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Figure 1: Effective thermal conductivity. 

 
The shape and the resulting values are in accordance with other reported results 
for different intumescent material, Tan et al [5]. 

�� $QDO\WLFDO�VWHHO�WHPSHUDWXUH�GHYHORSPHQW�
Heat transfer analysis of fire protected steel elements normally requires the 
solution of a two-dimensional transient diffusion equation. Since heating 
conditions assumes steel members fully embedded in fire, the 2D problem can be 
approximated by the one-dimensional differential conduction equation, assuming 
a steel lumped capacitance, see fig.2, Wang et al [6]. The steel thickness G �  may 
be determined, inverting the steel section factor 3�$. 
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Figure 2: One-dimensional heat transfer model. 

 
Considering constant thermal properties, temperature independent, the 
temperature field through the homogeneous insulation layer is given by the 
differential eqn (3). 
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where α 	 N 	 �ρ 	 F 	  represents the insulation thermal diffusivity, ρ 	  and F 	  represents 
the specific mass and specific heat, respectively. 
The non-homogeneous boundary conditions for this model are given by: 
 ( ) 0),(,0 == [W7JW7  (4) 
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where 4 �  represents the steel heat capacitance, 4 � � ρ � F � G � . The initial condition 
for the heat transfer analysis is assumed to be: 
 ( ) 0, 0, 0 == W7[7  (6) 

The existence of the non-homogenous (time-varying) boundary condition, eqn 
(4) at fire interface turns this problem impossible to be solved by classical 
methods. The non-classical solution uses Duhamel’ s theorem and Green’ s 
function, herein presented. 

���� 7HPSHUDWXUH�GHYHORSPHQW�XVLQJ�'XKDPHO¶V�WKHRUHP�
Duhamel’ s theorem allows expressing the solution of this problem in terms of an 
integral auxiliary problem solution corresponding to homogeneous boundary 
conditions. Applying Duhamel’ s theorem, if Y )�U�W� represents the temperature 
at position U, for the instant W, in a solid with zero temperature conditions, while 
its surface is kept at unit temperature, the solution for the problem, when the 
surface temperature is φ�W�, is given by eqn (7), Carslaw el al [7]. 
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Consider a new auxiliary problem defined by eqns (8-11), obtained with a 
variable change, θ�[�W� 7�[�W��7 � . 
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 ( ) 0, 00, == W[θ  (11) 
The solution to this auxiliary problem is given by the eqn (12), Carslaw el al [7]. 
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in which  β  represents the roots of the transcendental equation µββ =!! WJ . 
Considering the fire gas temperature given by the standard fire ISO curve, the 
solution of the previous integral is not straightforward, because of the 
logarithmic and exponential function product, appearing in the exponential 
integral. The common way to suppress this difficulty is to approximate the 
standard fire ISO curve by a sum of exponential functions, also used in the SP 
approach, Wang et al [6], and defined by eqn (13), regarding an initial zero 
temperature. 
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The coefficients &θ  and 'φ  are constants reproduced in table 1. 

 

Table 1:  Constants in exponential expression. 

M  0 1 2 3 

[ ]&ºθ  1325 -430 -270 -625 

[ ]1−Kφ  0 0.2 1.7 19 

 
The solution of the integral eqn (7) considering eqn (13) allows the 
determination of steel time varying temperature, considering (G[ = . 
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where ( ) ( )[ ]µµββµβ +++= 22222 3333. . 

���� 7HPSHUDWXUH�GHYHORSPHQW�XVLQJ�*UHHQ¶V�IXQFWLRQ��
Consider, for general proposes, the heat transfer problem defined by eqn (15) in 
region 5, subjected to the generic boundary condition eqn (16) at surface 6 4  and 
initial condition eqn (17), Beck [9]. 
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The term 7P2  could represent the side heat losses being )(UIP = . The 
general boundary condition may represent five different boundary conditions by 
setting 0=6N  or N , 0=7K  or K  and 0=G  or 0≠G . 
The Green’ s function (GF) method consists to define the GF to determine the 

temperature solution. The GF, ( )τ,, UWU* ′ , represents the temperature at the 

location U  and time W , resulting from an instantaneous point source of heat 
releasing a unit of thermal energy at location U′  and time τ . 
The GF associated with the problem defined by eqns (15-17) obeys the following 

equations, where 2
0∇  relates to the ’U  coordinates. 

 ( ) ( )
τα

τδδ
α ∂

∂=−−−′+∇ **PWUU* 11 22
0  (18) 

 ( )
ττ

ρ
∂
∂=

∂
∂=+

∂
∂ *4*FG*KQ
*N 8:999
9

9  (19) 

 ( ) 0,, 0 =′ =ττUWU*  (20) 

δ  represents Dirac’ s delta function. This auxiliary problem has homogeneous 
boundary conditions and zero initial temperature. Since the GF may only be 
found for linear differential equations, the thermal properties are kept constant. 
Rewriting eqn (15) in terms of U′  and τ , results. 
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The product of the eqn (21) by * and eqn (18) by 7 , subtracting the last from 
the previous, the following equation is obtained. 
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Integrating the previous equation in respect to U′  over 5  domain, and with 
respect to τ  from � to W
 W�ε, being ε  a small positive number, using Green’ s 
theorem and rearranging in order to 7�U�W�, eqn (23) is obtained. This equation 
expresses the temperature field in a solid with prescribed non-homogeneous 
boundary conditions. The GF in the first term on the RHS should be evaluated 
for the time τ=0. The fourth term on the RHS accounts for the effect of Dirichlet 
boundary conditions type. Using a classical method for solving the homogeneous 

problem, it is possible to determine ( )0,, UWU* ′ . Ozisik [10], stated that 

( )τ,, UWU* ′  could be obtained by replacing W  by τ−W  in the homogeneous 

problem solution. 
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The solution of the homogeneous problem considering the homogeneous 
problem defined by eqns (8-11), taking into account that ( ) 0θ=[) , is 
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where the eigencondition is equal to ( ) ( )JKKK G[[; ββ sin, =  and the 

eigenvalue β  is given by the transcendental equation already presented. )([Z  

represents the weight function equal to ( ) ( )[//44[Z LM −+= δ1)(  and 
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NO

PPQ G[[;[Z1
0

2,)( ββ , Beck [9]. 

After substitution for the fire gas temperature in eqn (23), steel temperature will 
be determined according to eqn (25). 
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�� $QDO\WLFDO�DQG�QXPHULFDO�FRPSDULVRQ�ZLWK�H[SHULPHQWDO�
UHVXOWV�

Steel temperatures, from experimental results, described in the section 2, are 
compared with the analytical and numerical results. Both consider the effective 
thermal conductivity represented in figure 1. Since eqn (14) and eqn (25) were 
determined considering constant thermal properties, an incremental time 
stepping procedure based on a forward finite difference is applied. The 
remaining insulation thermal properties were considered temperature 
independent and equal to ρ \=1360 [kg/m3] and F \=1000 [J/kg/K]. The steel 



thermal properties considered are ρ ] =7850 [kg/m3], F ] =600 [J/kg/K] and λ=45 
[W/m/K]. 
Numerical results were evaluated from a 2D heat transfer model based in the 
finite element method performed using the PDEtool box from Matlab software. 
All the analyses used time increment equal to 30 [s], as recommended for 
numerical stability. 
The figures (3-5) present the analytical and numerical steel temperature 
development compared with the experimental results. The solution (TS-DT) and 
(TS-GF) represents steel temperature determined by the Duhamel’ s theorem and 
Green’ s function methods, respectively, considering always six terms. 
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Figure 3: Steel temperature development from test 5. 
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Figure 4: Steel temperature development from test 6. 
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Figure 5: Steel temperature development from test 7. 

 
At the initial stage all the results agree well, but for the final fire stage the 
analytical and the numerical results, slightly diverge. 
The figures (6-8) represent steel temperature evolution for three different 
insulation thickness 1000, 1500 and 2000 [µm] applied over three steel beams, 
HEA 300, IPE330 and a IPE160 with a section factor equal to 153, 200, and 310 
[m-1], respectively. 



For the insulation case of 1000 [µm], fire gas temperature and thermal properties 
were considered equal to the conditions of test 5. All the other cases use both 
parameters equal to the conditions of test 6. 
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Figure 6: Steel temperature development for G \=1000 [µm]. 
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Figure 7: Steel temperature development for�G \=1500 [µm]. 
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Figure 8: Steel temperature development for G \=2000 [µm]. 

 
The results, in figures 6-8, show that for the same protection thickness, steel 
temperature increases with the steel section factor as expected. The results based 
in the Duhamel’ s theorem are always greater than those obtained from the 
Green’ s function. The difference between both analytical methods decrease as 
far as µ is reduced. This may occur by incrementing the section factor or 
reducing the insulation thickness. 
All numerical results obtained from thermal finite element analysis are close to 
Green’ s functions results. At the final stage of simulations the numerical results 
and the analytical results present a distinct behaviour. 



�� &RQFOXVLRQV��
Two different analytical solutions for steel temperature evolution were presented, 
using Duhamel’ s theorem and Green’ s function method. Both methods agree 
well when using six or more terms.  
Non linear numerical finite element simulations were performed using 
PDEtoolbox from Matlab. 
Experimental results were compared with analytical and numerical predictions. 
Numerical results predict smaller steel temperature, in the main stage of fire, 
compared with analytical results. 
For reduced values of the ratio of heat capacity between the insulation and steel, 
the results obtained from both analytical methods are close. 
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