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Abstract

The heat transfer analysis plays an important role in the temperature prediction
of insulated steel members exposed to fire conditions. Based on the results of a
previous experimental work, made in intumescent-coated protected elements, the
intumescent effective thermal conductivity temperature variation was estimated.
An analytical approach, based on the one-dimensional heat transfer parabolic
partial differential equation through the insulation, considering a non-
homogeneous (time-varying) boundary condition at fire interface and a lumped
capacitance at the insulation-steel interface, is presented. Solutions are
established with temperature independent thermal properties and then extended
to temperature dependent thermal properties. These solutions are compared with
numerical results performed by finite element method using Matlab for different
values of insulations thicknesses and steel section factors.
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1 Introduction

Fire protection costs may represent an important part of global construction
costs, being more significant in the case of steel construction, requiring
frequently the application of an insulation material, Longton et al [1]. The use of
passive protection materials is one of the measures normally adopted to prescribe
structural fire resistance. Intumescent coating represents around one third of steel
fire protection and is growing mainly due to their use in off-site applications.



The fire resistance of an insulated steel member is determined by assessing the
loadbearing capacity of the component during fire exposure. Heat transfer
analysis of the insulated steel member is of great importance for determining,
accurately, critical temperature of the protected element which depends
essentially on the protection material properties and on the bulk fire temperature.
The specification of the minimum protection thickness is recommended by
manufactures. These values are based on experimental fire tests, using typical
structural elements (beams and columns) being the reports kept confidential. The
results are presented in form of tables or graphs, for different critical
temperatures, protection thicknesses and different fire resistance periods. In a
previous work, a set of experimental fire resistance tests was conducted on steel
beams protected with intumescent coatings and the effective thermal
conductivity was determined as function of the mean insulation temperature
evolution, Mesquita et al [2].

The aim of this paper is to present an analytical development that considers one-
dimensional heat transfer equation using Duhamel’s theorem and Green’s
functions methods to determine steel temperature of protected structural
elements. The experimental results are compared with the analytical results and
with numerical results based on the finite element method from the PDEToolbox
of Matlab, considering the effective thermal conductivity temperature dependent.
The study is extended to other protection thicknesses and steel section factors.

2 Experimental fire resistance results

The experimental results of full-scale fire tests, conducted on steel beams
protected with solvent-based intumescent coating were previously published.
Specimens have been coated and heated with a heating rate of 800 [°C/h] and
temperatures recorded on steel IPE100 profiles. Higher thickness of protection
results in higher fire resistance time, increasing critical temperature.

The tests herein considered are tests 5, 6 and 7, with dry film thickness mean
value of 1329, 1441 and 1521 [um], respectively. The experimental results are
presented in the figures 3-5.

According to the Eurocode 3 formulae CEN [3], steel temperature prediction is
calculated using a numerical time stepping scheme, given by:
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where Ar<30 [s] for insulated steel elements. ATy and AT, ¢ Tepresent the
temperature increments of the insulated steel and fire gas during the time Az. P/4
is the steel section factor, while d; and k; accounts for the thickness and
conductivity of the protection material and 4 is the ratio of the heat capacitance
between insulation and steel. ps and cg represent steel specific mass and specific
heat.
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The inverse of eqn (1) may explicit thermal conductivity, according to
temperature measured results on beam and on the heating source. This lead to the
following expression:
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The effective thermal conductivity temperature variation may be approximated

considering a protection temperature calculated by the average value of the

heating source and steel temperature 7;(i)=[T,(i)+Ts(i-1)]/2, Wickstrom [4].

Figure 1 represents the effective thermal conductivity determined using the

experimental results and eqn (2).
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Figure 1: Effective thermal conductivity.

The shape and the resulting values are in accordance with other reported results
for different intumescent material, Tan et al [5].

3 Analytical steel temperature development

Heat transfer analysis of fire protected steel elements normally requires the
solution of a two-dimensional transient diffusion equation. Since heating
conditions assumes steel members fully embedded in fire, the 2D problem can be
approximated by the one-dimensional differential conduction equation, assuming
a steel lumped capacitance, see fig.2, Wang et al [6]. The steel thickness dy may

be determined, inverting the steel section factor P/A.
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Figure 2: One-dimensional heat transfer model.

Considering constant thermal properties, temperature independent, the
temperature field through the homogeneous insulation layer is given by the
differential eqn (3).
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where a;=ky/p; c; represents the insulation thermal diffusivity, p; and c; represents

the specific mass and specific heat, respectively.
The non-homogeneous boundary conditions for this model are given by:
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where Qg represents the steel heat capa01tance, Os =ps csds. The initial condition
for the heat transfer analysis is assumed to be:

T(x,0)=7,, =0 (6)

The existence of the non-homogenous (time-varying) boundary condition, eqn
(4) at fire interface turns this problem impossible to be solved by classical
methods. The non-classical solution uses Duhamel’s theorem and Green’s
function, herein presented.

3.1 Temperature development using Duhamel’s theorem

Duhamel’s theorem allows expressing the solution of this problem in terms of an
integral auxiliary problem solution corresponding to homogeneous boundary
conditions. Applying Duhamel’s theorem, if v=F(7,t) represents the temperature
at position r, for the instant ¢, in a solid with zero temperature conditions, while
its surface is kept at unit temperature, the solution for the problem, when the
surface temperature is @(2), is given by eqn (7), Carslaw el al [7].
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Consider a new auxiliary problem defined by eqns (8-11), obtained with a
variable change, 6(x,t)=T(x,t)-T.
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The solution to this auxiliary problem is given by the eqn (12), Carslaw el al [7].
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in which 3, represents the roots of the transcendental equation 3, 1gf8, = U

Considering the fire gas temperature given by the standard fire ISO curve, the
solution of the previous integral is not straightforward, because of the
logarithmic and exponential function product, appearing in the exponential
integral. The common way to suppress this difficulty is to approximate the
standard fire ISO curve by a sum of exponential functions, also used in the SP
approach, Wang et al [6], and defined by eqn (13), regarding an initial zero
temperature.

3
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The coefficients 6 , and ¢ , are constants reproduced in table 1.

Table 1: Constants in exponential expression.
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The solution of the integral eqn (7) considering eqn (13) allows the
determination of steel time varying temperature, considering X = d i -
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3.2 Temperature development using Green’s function

Consider, for general proposes, the heat transfer problem defined by eqn (15) in
region R, subjected to the generic boundary condition eqn (16) at surface S; and
initial condition eqn (17), Beck [9].
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The term m°T could represent the side heat losses being m = f(r). The
general boundary condition may represent five different boundary conditions by
setting K, =0 or k, B, =0 or h and d =0 or d #0.

The Green’s function (GF) method consists to define the GF to determine the

temperature solution. The GF, G(r,t T ), represents the temperature at the

location 7 and time f, resulting from an instantaneous point source of heat

releasing a unit of thermal energy at location 7 and time 7 .
The GF associated with the problem defined by eqns (15-17) obeys the following

. 2 ; .
equations, where Vo relates to the 7 coordinates.

VG +L 80 - r—1)-mG =LY as)
a a d1
k,a—G+h,G=(pcd),a—G=Q§,a—G (19)
on, ot~ 0T
Gl i), =0 20)

J represents Dirac’s delta function. This auxiliary problem has homogeneous
boundary conditions and zero initial temperature. Since the GF may only be
found for linear differential equations, the thermal properties are kept constant.
Rewriting eqn (15) in terms of ¥’ and 7 , results.
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The product of the eqn (21) by G and eqn (18) by 7', subtracting the last from
the previous, the following equation is obtained.
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Integrating the previous equation in respect to 7" over R domain, and with
respect to 7 from 0 to r*=t+¢, being € a small positive number, using Green’s
theorem and rearranging in order to 7(r,¢), eqn (23) is obtained. This equation
expresses the temperature field in a solid with prescribed non-homogeneous
boundary conditions. The GF in the first term on the RHS should be evaluated
for the time t=0. The fourth term on the RHS accounts for the effect of Dirichlet
boundary conditions type. Using a classical method for solving the homogeneous

#,0). Ozisik [10], stated that
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problem solution.

r’,T ) could be obtained by replacing / by #—17 in the homogeneous
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The solution of the homogeneous problem considering the homogeneous
problem defined by eqns (8-11), taking into account that (x): 60 , 18
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where the eigencondition is equal to X, (4, ,x)=sin(f,x/d,) and the
eigenvalue ﬁ is given by the transcendental equation already presented. W(X)

represents the weight function equal to w(x) =1+ (Q,. /0., )Lé(L —x) and

dl
N(B,)= IW(X)X,, (B,.x) dx . Beck [9].
0

After substitution for the fire gas temperature in eqn (23), steel temperature will
be determined according to eqn (25).
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4 Analytical and numerical comparison with experimental
results

Steel temperatures, from experimental results, described in the section 2, are
compared with the analytical and numerical results. Both consider the effective
thermal conductivity represented in figure 1. Since eqn (14) and eqn (25) were
determined considering constant thermal properties, an incremental time
stepping procedure based on a forward finite difference is applied. The
remaining insulation thermal properties were considered temperature
independent and equal to p=1360 [kg/m3] and ¢=1000 [J/kg/K]. The steel



thermal properties considered are ps=7850 [kg/m3], ¢s=600 [J/kg/K] and A=45
[W/m/K].

Numerical results were evaluated from a 2D heat transfer model based in the
finite element method performed using the PDEtool box from Matlab software.
All the analyses used time increment equal to 30 [s], as recommended for
numerical stability.

The figures (3-5) present the analytical and numerical steel temperature
development compared with the experimental results. The solution (Ts-DT) and
(Ts-GF) represents steel temperature determined by the Duhamel’s theorem and
Green’s function methods, respectively, considering always six terms.
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Figure 3: Steel temperature development from test 5.
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Figure 4: Steel temperature development from test 6.
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Figure 5: Steel temperature development from test 7.

At the initial stage all the results agree well, but for the final fire stage the
analytical and the numerical results, slightly diverge.

The figures (6-8) represent steel temperature evolution for three different
insulation thickness 1000, 1500 and 2000 [um] applied over three steel beams,
HEA 300, IPE330 and a IPE160 with a section factor equal to 153, 200, and 310
[m'], respectively.



For the insulation case of 1000 [um], fire gas temperature and thermal properties
were considered equal to the conditions of test 5. All the other cases use both
parameters equal to the conditions of test 6.
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Figure 6: Steel temperature development for d=1000 [pm].
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Figure 7: Steel temperature development for d=1500 [pm].
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Figure 8: Steel temperature development for d=2000 [pm].

The results, in figures 6-8, show that for the same protection thickness, steel
temperature increases with the steel section factor as expected. The results based
in the Duhamel’s theorem are always greater than those obtained from the
Green’s function. The difference between both analytical methods decrease as
far as p is reduced. This may occur by incrementing the section factor or
reducing the insulation thickness.

All numerical results obtained from thermal finite element analysis are close to
Green’s functions results. At the final stage of simulations the numerical results
and the analytical results present a distinct behaviour.



5 Conclusions

Two different analytical solutions for steel temperature evolution were presented,
using Duhamel’s theorem and Green’s function method. Both methods agree
well when using six or more terms.

Non linear numerical finite element simulations were performed using
PDEtoolbox from Matlab.

Experimental results were compared with analytical and numerical predictions.
Numerical results predict smaller steel temperature, in the main stage of fire,
compared with analytical results.

For reduced values of the ratio of heat capacity between the insulation and steel,
the results obtained from both analytical methods are close.
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