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SYSTEM UNITS

Bureau International des Poids et Mesures
http://www.bipm.fr/enus/welcome.html

Review

Quantity To change 
English Units

To Metric Units Multiply English 
Units by

Length Inch [in]
Foot [ft]
Mile [ml]

Millimeter [mm]
Meter [m]
Kilometer [km]

25,4
0,3948
1,6093

Area Square foot [ft2]
Acre [a]

Square meter [m2]
Square meter [m2]

0,0929
4046,8564929

Volume Gallon [gal]
Cubic foot [ft3]

Liter [L] or [l]
Cubic meter [m3]

3,7854
0,0283

Pressure psf [lb/ft2]
psi [lb/in2]

Pa
kPa

47,8803
6,8947

Weight pound [lb] kilogram [kg] 0,4536
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Power base 10 Symbol Designation
Multiples 10 18 E exa

10 15 P peta
10 12 T tera
10 9 G giga
10 6 M mega
10 3 k kilo
10 2 h hecto
10 da deca

Submultiples 10 –1 d deci
10 –2 c centi
10 –3 m mili
10 –6  micro
10 –9 n nano
10 –12 p pico
10 –15 f fento
10 -18 a ato

MULTIPLES AND SUB-MULTIPLES

Review
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MECANISMS – TRAJECTORY
Rigid bodies, assembly together to produce movement.

DesignView WAS a trade mark of Computer Vision

Review Accident Analysis & Reconstruction, Exponent Engineering

Crash test – Initial speed equal to 40 [km/h]. Tracking 
acceleration for human and car, Interactive Physics.
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KINEMATIC 
– Revision –

POSITION
TIME t TIME t+Dt

X X+X

 v x
t L T 

 /

The motion of a particle along a straight line is termed rectilinear motion. To
define the position P of the particle on that line, we choose a fixed origin O
and a positive direction. The distance x from O to P, with the appropriate sign,
completely defines the position of the particle on the line and is called the
position coordinate of the particle.

The velocity v of the particle is equal to the time derivative of the position
coordinate x,

 v x
t L T dx

dtt lim /

0

Cap.1
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ACCELERATION 
The acceleration a is obtained by differentiating v with respect to t,

a = dv
dt

or a = d 2x
dt 2

we can also express a as

•The velocity v and acceleration a are represented by algebraic numbers which can
be positive or negative. A positive value for v indicates that the particle moves in the
positive direction, and a negative value that it moves in the negative direction.
•A positive value for a, however, may mean that the particle is truly accelerated (i.e.,
moves faster) in the positive direction, or that it is decelerated (i.e., moves more
slowly) in the negative direction. A negative value for a is subject to a similar
interpretation.

x

PO

x
+-

 a v
t L T dv

dtt lim /

0 2

a dv
dt

dv
dx

dx
dt v dv

dx  

Cap.1
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GRAPHICAL SOLUTION
Sometimes it is convenient to use a graphical solution for problems involving 
rectilinear motion of a particle. The graphical solution most commonly involves x -
t, v - t , and a - t curves.
a

t
v

t
x

t

t1 t2

v1

v2

t1 t2

v2 - v1 =     a dt
t1

t2

x1

x2

t1 t2

x2 - x1 = v dt
t1

t2

At any given time t,

v = slope of x - t curve
a = slope of v - t curve

while over any given time interval t1 to t2,

v2 - v1 = area under a - t curve
x2 - x1 = area under v - t curve

Cap.1
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Thematic Exercise 1

x t t 6 2 3
Problem: When a point is moving through a straight line, its position is
defined by:

Calculate the instantaneous velocity and acceleration for all time instants.

2312)( tt
dt
dxtv 

t
dt

tdvta 612)()( 

x

v
a

time

Cap.1
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KINEMATIC EXERCISE –2

    0,,s t,40156 23  tmxtttx

Problem: The position of a particle P when 
moving along a straight line is given by:

Calculate:
a) The time for the velocity to vanish.
b) The position and the displacement travel by the point to that instant.
c) The acceleration of that point at that instant.
d) The distance travel by the point from the position at the instant 

t=4[s] till the instant of t=6[s].

 
 2

2

126

15123

s
mta

s
mttv





51015123 2  tttta)

b) -60(m)5)x(t 

x

PO

x
+-

Note: the changes to sign velocity should be cheked during the time interval
(m) 400)x(t  (m) 0015) t0,x(t 

Cap.1
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KINEMATIC EXERCISE –2 resolution

c)

d)

x

PO

x
+-

time

)(ms 185)a(t -2

18(m) total -506) x(t-60,5) x(t-52,4)x(t 

position

Cap.1
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TYPES OF RECTILINEAR MOTION

uniform rectilinear motion, in which the velocity v of the particle is constant.

x = xo + vt

v = vo + at
x = xo + vot +     at21

2

v2 = vo + 2a(x - xo )2

uniformly accelerated rectilinear motion, in which the acceleration a of the particle 
is constant.

Cap.1
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RELATIVE MOTION

x

O

xA
xB

xB/A

A B

When particles A and B move along the same
straight line, the relative motion of B with
respect to A can be considered. Denoting by
xB/A the relative position coordinate of B with
respect to A , we have

xB = xA + xB/A
Differentiating twice with respect to t, we obtain:

vB = vA + vB/A aB = aA + aB/A

where vB/A and aB/A represent, respectively, the relative velocity and the 
relative acceleration of B with respect to A.

A
B

C

xA
xB

xC

Cap.1
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CURVILINEAR MOTION

x

y

r
P

Po

O

v

s

The curvilinear motion of a particle
involves particle motion along a curved
path. The position P of the particle at a given
time is defined by the position vector r
joining the origin O of the coordinate system
with the point P.

The velocity v of  the particle is defined by the relation

v = dr
dt

The velocity vector is tangent to the path of the particle, and has a magnitude v
equal to the time derivative of  the length s of the arc described by the particle:

v = ds
dt

Cap.1
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x

y

r
P

Po

O

v

s

v = dr
dt

Note: In general, the acceleration a of the particle is 
not tangent to the path of the particle. It is defined 
by the relation

v = ds
dt

a = dv
dt

x

y

r
P

Po

O

a

s

CURVILINEAR MOTION – cont.

Cap.1
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x

y

z
i

j
k

r

ax

ay

az

P

Denoting by x, y, and z the rectangular coordinates
of a particle P, the rectangular components of
velocity and acceleration of P are equal,
respectively, to the first and second derivatives with
respect to t of the corresponding coordinates:

vx = x vy = y vz = z. . .

ax = x ay = y az = z.. .. ..

x

y

z
i

j
k

vx

vy

vz

xi
yj

zk

P

r

The use of rectangular components is particularly
effective in the study of the motion of projectiles.

GENERAL MOVEMENT DISCRIPTION

Cap.1
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x

y

z

x’

y’

z’

A

B

rA

rB rB/A

For two particles A and B moving in space,
we consider the relative motion of B with
respect to A , or more precisely, with respect
to a moving frame attached to A and in
translation with A. Denoting by rB/A the
relative position vector of B with respect to
A , we have

rB = rA +  rB/A

Denoting by vB/A and aB/A , respectively, the relative velocity and the relative
acceleration of B with respect to A, we also have

vB = vA +  vB/A

aB = aA +  aB/A

and

RELATIVE MOTION OF TWO PARTICLES

Cap.1
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It is sometimes convenient to resolve the
velocity and acceleration of a particle P into
components other than the rectangular x, y, and z
components. For a particle P moving along a
path confined to a plane, we attach to P the unit
vectors et tangent to the path and en normal to
the path and directed toward the centre of
curvature of the path.

The velocity and acceleration are expressed in terms of tangential and
normal components. The velocity of the particle is

The acceleration is determined by time derivative:

v = vet

a =   et   +       en
v2


dv
dt

CURVILINEAR COORDINATES

x

y
C

P

O

an =       en
v 2


at =       et
dv
dtet

en

Note: - v is the speed of the particle 
-  is the radius of curvature of its path. 
- The velocity vector v is directed along the tangent to the path. 
- The acceleration vector a consists of a component at directed along the tangent to 
the path and a component an directed toward the center of curvature of the path.

Cap.1

1

t

n

d de d dse
dt d ds dt

e v
















te

ned

ds
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x

P

O

e



r = r er

er

When the position of a particle moving in a plane is
defined by its polar coordinates r and , it is
convenient to use radial and transverse components
directed, respectively, along the position vector r of
the particle and in the direction obtained by rotating r
through 90o counterclockwise.
Unit vectors er and e are attached to P and are
directed in the radial and transverse directions. The
velocity and acceleration of the particle in terms of
radial and transverse components is:

POLAR COORDINATES

 
    



















errerr

ererererer
dt
der

dt
edrer

dt
edrera

erer
dt
d

d
edrer

dt
edrerv

err

r

rr

r
r

r
r

r
r

r

r

















































22

Note: It is important to
note that ar is not equal
to the time derivative of
vr, and that a is not
equal to the time
derivative of v.

Cap.1
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RELATIVE MOTION – Thematic Exercise 2

Problem:
- The rotating 0.9 [m] arm length turns around  the 

point O with the constrained known expression:

- The cursor B travels along the arm being its 
movement described by the following expression:

- Calculate :
a) the expressions for the instantaneous position, 

velocity and acceleration of the cursor B.
b) The velocity and accelerations from the cursor B, 

after rotating the arm 30º.

21105,1 t

212,09,0 tr 
X

Y

r



B

O

Resolution in Cartesian coordinates:

    jrirr
  sincos 






















cossin

sincos




rr

rr
v






















cossincos2sin

sincossin2cos
2

2





rrrr

rrrr
a

Cap.1
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RELATIVE MOTION – resolution
Resolution in Polar coordinates:

rerr 


    
    





ettet

etet

ererv

r

r

r










3

2

036.027.024.0

 t0.312.09.024.0

 







   
          

    





etett

etttett

errerra

r

r

r










27.0180.0036.027.024.0

3.012.09.03.024.023.012.09.024.0

2

23

22

2







Scalar velocity and acceleration results:

22
aaa r 22

vvv r 

22
yx aaa 22

yx vvv 

Cap.1
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NEWTON’S SECOND LAW (linear momentum)

Introducing the linear momentum of a particle, L = mv, Newton’s second law can 
also be written as

Denoting by m the mass of a particle, by  F the sum, or resultant, of the forces
acting on the particle, and by a the acceleration of the particle relative to a
newtonian frame of reference, we write:

amF 


LF 


which expresses that:  the resultant of the forces acting on a particle is equal to 
the rate of change of the linear momentum of the particle.

Cap.2
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SOLVING A PROBLEM

x

y

P

an

O

at

x

y

z

ax

ay

az

P

x

P

a

O

ar

r

To solve a problem involving the motion of a particle,  F = ma
should be replaced by equations containing scalar quantities.

Fx = max      Fy = may       Fz = maz 

Using tangential and normal components,

Using radial and transverse components,

Using rectangular or cartesian components,

Ft = mat = m dv
dt

v2

Fn = man = m

.. . .
F = ma = m(r + 2r)

..
Fr = mar= m(r - r2)

.

Cap.2
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PROBLEM  12.123 – Thematic Exercise 3

Block A has a mass of 30 kg and block B has a mass of 15
kg. The coefficients of friction between all plane surfaces
of contact are s = 0.15 and k = 0.10.
Knowing that  = 30o and that the magnitude of the force
P applied to block A is 250 N, determine:
(a) the acceleration of block A ;
(b) the tension in the cord.

P


A
B

1.  Kinematics: Examine the acceleration of the particles.
Assume motion with block A moving down. If block A
moves and accelerates down the slope, block B moves
up the slope with the same acceleration.



A
BaA

aBaA = aB

Cap.2
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PROBLEM  12.123 (cont.)

2.  Kinetics: Draw a free body diagram showing the applied forces and an equivalent 
force diagram showing the vector ma or its components.

Block A :
mA a = 30 a

N

T

250 N

WA= 294.3 N

Fk = k N

=

Block B : WB= 147.15 N

T
N

N’

Fk = k N

F’k = k N’

mB a = 15 a

=

3. When a problem involves dry
friction: It is necessary first to
assume a possible motion and
then to check the validity of the
assumption. The friction force on
a moving surface is F = k N.
The friction force on a surface
when motion is impending is F =
s N.

Cap.2

Famax

Fa

Q1 Q2

Movement
Static

Famax=s x N

NF kk   NF kk  
P

N

Q

Fa
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PROBLEM  12.123 (cont.)
4. Apply Newton’s second law: The relationship between the forces acting on the
particle, its mass and acceleration is given by  F = m a . The vectors F and a can
be expressed in terms of either their rectangular components or their tangential and
normal components. Absolute acceleration (measured with respect to a newtonian
frame of reference) should be used.

Fy = 0:       N - (294.3) cos 30o = 0         N = 254.87 N

then: Fk = k N = 0.10 (254.9) = 25.49 N

Fx = ma:    250 + (294.3) sin 30o - 25.49 - T = 30 a

then: 371.66 - T = 30 a (1)

Block A :

Block B :

Fy = 0: N’ - N - (147.15) cos 30o = 0 : N’ = 382.31 N
then: F’k = k N’ = 0.10 (382.31) = 38.23 N
Fx = ma: T - Fk - F’k - (147.15) sin 30o = 15 a
then: T - 137.29 = 15 a (2)

mB a = 15 a

WB= 147.15 N

T
N

N’

Fk = k N

F’k = k N’

=
30o

X
mA a = 30 a

=
N

T

250 N

WA= 294.3 N

Fk = k N

30o

Y

Cap.2

X

Y
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PROBLEM  12.123 - solution
Solving equations (1) and (2) gives: T = 215 [N] a = 5.21 [m/s2]

Check: We should verify that blocks actually move by determining the value of
the force P for which motion is impending. Find P for impending motion. For
impending motion both blocks are in equilibrium:

Verify assumption of motion.

N

T

P

WA= 294.3 N

Fm = s N

30o

WB= 147.15 N

T
N

N’

Fm = s N

F’m = s N’

30o

Block B:Block A:

From  Static equilibrium:  
Fy = 0:   N = 254.87 N Fm = s N = 0.15 (254.87)=38.23 N
Fy = 0: N’ = 382.31 N F’m = s N’ = 0.15 (382.31)=57.35 N
Fx = 0:    P + (294.3) sin 30o - 38.23 - T = 0               (3)
Fx = 0:    T - 38.23 - 57.35 - (147.15) sin 30o = 0       (4)

Solving equations (3)
and (4) gives P = 60.2 N.
Since the actual value of
P (250 N) is larger than
the value for impending
motion (60.2 N), motion
takes place as assumed.

Cap.2
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PROBLEM 12.127
A small 200-g collar C can slide on a semicircular rod
which is made to rotate about the vertical AB at the
constant rate of 6 [rad/s]. Determine the minimum
required value of the coefficient of static friction
between the collar and the rod if the collar is not to
slide when:
(a)  = 90o, (b)  = 75o, (c)  = 45o.  
Indicate in each case the direction 
of the impending motion.



r = 600 mm

C

A

B

200 g

O

1.  Kinematics: Determine the acceleration of the particle.


r = 600 mm

C

A

B

O

an



r sin

Using curvilinear coordinates:

an = (r sin) 2

an = (0.6 m) sin ( 6 rad/s )2

an = 21.6 sin [m/s2]

at = 0
x

y O’

PO

an =       en
v 2


at =       et=0dv
dtet

en

Cap.2
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PROBLEM 12.127 (cont.)
2.  Kinetics: Draw a free body diagram showing the applied forces and an 
equivalent force diagram showing the vector ma or its components.



(0.2 kg)(9.81 m/s2)

O

N

F man = (0.2) 21.6 sin
= 4.32 sin N

=

3.  Apply Newton’s second law: The relationship between the forces acting on the 
particle, its mass and acceleration is given by  F = m a .  The vectors F and a
can be expressed in terms of either their rectangular components or their 
tangential and normal components.  Absolute acceleration (measured with respect 
to a Newtonian frame of reference) should be used.

Ft = mat:F - 0.2 (9.81) sin  =- 4.32 sin cos F = 0.2 (9.81) sin  - 4.32 sin cos 
Fn = man:    N - 0.2 (9.81) cos  = 4.32 sin sin N = 0.2 (9.81) cos  + 4.32 sin2

F = N4. Friction law:
Note: For a given ,  the values of F , N , and can be determined!!!

Cap.2
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PROBLEM 12.127 (solution)

Solution:
(a)  = 90o,       F = 1.962 N,  N = 4.32 N,     = 0.454  (down)
(b)  = 75o,       F = 0.815 N,   N = 4.54 N,     = 0.1796  (down)
(c)  = 45o,       F = -0.773 N,   N = 3.55 N,    = 0.218    (up)



r = 600 mm

C

A

B

200 g

O



(0.2 kg)(9.81 m/s2)

O

N

F man = (0.2) 21.6 sin
= 4.32 sin N

=

Cap.2
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PROBLEM  12.128- Thematic exercise 4


b

b

r

O
A

B CD

E

Pin B weighs 4 oz and is free to slide in a
horizontal plane along the rotating arm OC and
along the circular slot DE of radius b = 20 in.
Neglecting friction and assuming that  = 15 rad/s
and  = 250 rad/s2 for the position  = 20o,
determine:
(a) the radial and transverse components of the 
resultant force exerted on pin B;
(b) the forces P and Q exerted on pin B, 
respectively, by rod OC and the wall of slot DE.

..
.

1. Kinematics: Examine the velocity and acceleration of the particle.  
In polar coordinates:
v = r er + r  e
a = (r - r 2 ) er + (r  + 2 r ) e

.
.. .
.

... .

r = r er

e

er



r = 2 b cos  3.13 [ft]
r = - 2 b sin   - 17.1 [ft/s]
r = - 2 b sin   - 2 b cos   2 = - 989.79 [ft/s2]

..
..

...

 = 20o

 = 15 rad/s
 = 250 rad/s2
..
.
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PROBLEM  12.128 (cont.)
2.  Kinetics: Draw a free body diagram showing the applied forces on pin B 
and an equivalent force diagram showing the vector ma or its components.

3. Apply Newton’s second law: The relationship between the forces acting on the
particle, its mass and acceleration is given by  F = m a . The vectors F and a can
be expressed in terms of either their rectangular components or their radial and
transverse components. With radial and transverse components:
 Fr = m ar = m ( r - r  2 ) and  F = m a = m ( r  + 2 r  )
Fr=(4/16)/32.2* [- 989.79 - ( 3.13 )(152 )] and F = (4/16)/32.2* [(3.13)(250) + 2 (-17.1)(15)]

Fr = -13.16 [lb] and F = 2.10 [lb]

.. . .. . .

r

O A

B
 

r

O A

B

Fr

F

mar

ma

=
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PROBLEM  12.128 (Solution)

r

O A

B
 

r

O A

B

Fr

F

=
Q

P
 



Fr = - Q cos 
-13.16 = - Q cos 20o

Q = 14.00 lb 40o

F = - Q sin  + P
2.10 = - 14.0 sin 20o + P

P = 6.89 lb 20o

(b) The forces exerted on pin B by both bodies are obtained by 
vector decomposition
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NEWTON’S SECOND LAW (angular momentum)

The angular momentum HO of a particle about 
point O is defined as the moment about O of 
the linear momentum mv of that particle.

HO = r x mv

We note that HO is a vector perpendicular to the plane containing r and mv and of 
magnitude: HO = rmv sin 

Resolving the vectors r and mv into rectangular components, we express the angular 
momentum HO in determinant form as:

HO =
i        j        k
x y z

mvx      mvy     mvz

x

y

z

Pr

HO

O

mv

Cap.2
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NEWTON’S SECOND LAW (cont.)

In the case of a particle moving in the xy plane, we have z = vz = 0. The angular 
momentum is perpendicular to the xy plane and is completely defined by its magnitude

HO = Hz = m(xvy - yvx)

Computing the rate of change HO of the angular momentum HO , and applying 
Newton’s second law, we write

.

OO H   M 

which states that : the sum of the moments about O of the forces acting on a
particle is equal to the rate of change of the angular momentum of the particle
about O.

amrvmvvmrvmrHO
  
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NEWTON’S SECOND LAW – special cases

0

mv0

r0

O
r

P0

P

mv

HO = constant
We conclude that the angular momentum of a particle moving under a central
force is constant, both in magnitude and direction, and that the particle moves in
a plane perpendicular to HO .

rmv sin = romvo sin o

Recalling that HO = rmv sin , for the motion of any particle under a central force,
we have, for points PO and P:

Using polar coordinates and recalling that v = r and HO = mr2, we have

r2 = h
.

where h is a constant representing the angular momentum per unit mass Ho/m, of the 
particle.

When the only force acting on a particle P is a 
force F directed toward or away from a fixed point 
O, the particle is said to be moving under a central 
force. Since MO = 0 at any given instant, it 
follows that HO = 0 for all values of t, and

.

Cap.2
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PROBLEM 12.131 -Thematic Exercise 5400 mm
100 mm

A B
A 250-g collar can slide on a horizontal rod
which is free to rotate about a vertical shaft.
The collar is initially held at A by a cord
attached to the shaft and compresses a spring
of constant 6 [N/m], which is undeformed
when the collar is located 500 [mm] from the

shaft. As the rod rotates at the rate o = 16 [rad/s], the cord is cut and the
collar moves out along the rod. Neglecting friction and the mass of the rod,
determine for the position B of the collar:

(a) The transverse component of the velocity of the collar;
(b) The radial and transverse components of its acceleration;
(c) The acceleration of the collar relative to the rod.

.

A B

Cap.2
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PROBLEM 12.131 (solution)
400 mm

100 mm

A B

r = r er

e
er



A B

v

a

ar


.

r

ererv r







     errerra r


 22 

 erv 


1.  Kinematics: Examine the velocity 
and acceleration of the particle.  
In polar coordinates:
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PROBLEM 12.131 (cont.)
2.  Angular momentum of a particle: Determine the particle velocity at B using 
conservation of angular momentum.  In polar coordinates, the angular momentum 
HO of a particle about O is given by:

HO = m r v
The rate of change of the angular momentum is equal to the sum of the moments 
about O of the forces acting on the particle.

If the sum of the moments is zero, the
angular momentum is conserved and
the velocities at A and B are related by:

 MO = HO
.

m ( r v)A = m ( r v)BA B

(v
.

(v

rB = 0.4 m

rA = 0.1 m

r
Since

  


AA rv 

    


B

A
B r

rv
2

     )16(
4.0
1.0 2

Bv

  ]/[4.0 smv B 



Cap.2
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PROBLEM 12.131 (cont.)
3.  Kinetics: Draw a free body diagram showing the applied forces and an 
equivalent force diagram showing the vector ma or its components.

F m ar

m a

=

Only radial force F (exerted by the spring) 
is applied to the collar.
For r = 0.4 m:
F = k x = (6 N/m)(0.5 m - 0.4 m)
F = 0.6 [N]

Fr = mar  0.6 N = (0.25 kg) ar  ar = 2.4 m/s2

F = ma  0 = (0.25 kg) a  a = 0

Kinematics. (c) The acceleration of the collar relative to the rod.

]/[1
4.0
4.0 srad

r
vrv  

  

]/[8.2]/[1])([4.0(]/[4.2 2222 smrsradmrsmrrar   

Conclusion: The relative acceleration is equal to the collar radial acceleration
Cap.2
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KINETICS OF PARTICLES: ENERGY AND 
MOMENTUM METHODS

The linear momentum of a particle is defined as the product mv of the mass m of the 
particle and its velocity v. From Newton’s second law, F = ma, we derive the 
relation

mv1 +       F dt = mv2
t1

t2

where mv1 and mv2 represent the momentum of the particle at a time t1 and a time t2 , 
respectively, and where the integral defines the linear impulse of the force F during 
the corresponding time interval. Therefore,

mv1 + Imp1     2 = mv2

which expresses the principle of impulse and momentum for a particle.

Cap.3
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KINETICS OF PARTICLES: ENERGY AND 
MOMENTUM METHODS

When the particle considered is subjected to several forces, the sum of the impulses
of these forces should be used;

Since vector quantities are involved, it is necessary to consider their x and y
components separately.

mv1 + Imp1      2 = mv2

The method of impulse and momentum is effective in the study of impulsive motion
of a particle, when very large forces, called impulsive forces, are applied for a very
short interval of time t, since this method involves impulses Ft of the forces,
rather than the forces themselves. Neglecting the impulse of any nonimpulsive
force, we write:

mv1 + Ft = mv2

mv1 + Ft = mv2

In the case of the impulsive motion of several particles, we write

where the second term involves only impulsive, external forces.
Cap.3
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KINETICS OF PARTICLES: 
ENERGY AND MOMENTUM METHODS

In the particular case when the sum of the impulses of the external forces is zero,
the equation above reduces to:

mv1 = mv2
that is, the total momentum of the particles is conserved.
In the case of direct central impact, two colliding bodies A and B move along 
the line of impact with velocities vA and vB , respectively. Two equations can be 
used to determine their velocities v’A and v’B after the impact. 
1- The first represents the conservation of the total momentum of the two bodies,

A

B

vA

vB

Line of
Impact

Before Impact

A

B

v’A

v’B

After Impact

mAvA + mBvB = mAv’A + mBv’B

2- The second equation relates the relative velocities of the two bodies before and 
after impact, v’B - v’A = e (vA - vB )

Cap.3
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COEFFICIENTS OF RESTITUTION
• The coefficient of restitution is the ratio of speeds of a falling object, from when it hits a

given surface to when it leaves the surface.
• Procedure:

– This experiment was carried out in Midwood High School, on the second floor, on an concrete
surface.

– Take the ball and hold it at a set height above the surface. (height of 92 cm for all trials.)
– Drop the ball and record how high it bounces.
– Repeat for 5 trials.
– Repeat with different balls: Practice golf ball, Wilson tennis ball, rubber band ball - many rubber

bands put together in ball form, Red plastic ball, Generic unpainted billiard ball, Rubber blue ball,
Painted wood ball, Steel ball bearing, Glass marble.

– Coefficient of Restitution = speed up / speed down=SQRT(h(ave)/H).
object H (cm) h1 (cm) h2 (cm) h3 (cm) h4 (cm) h5 (cm) have (cm) c.o.r.

range golf ball 92 67 66 68 68 70 67.8 0.858

tennis ball 92 47 46 45 48 47 46.6 0.712

billiard ball 92 60 55 61 59 62 59.4 0.804

hand ball 92 51 51 52 53 53 52.0 0.752

wooden ball 92 31 38 36 32 30 33.4 0.603

steel ball bearing 92 32 33 34 32 33 32.8 0.597

glass marble 92 37 40 43 39 40 39.8 0.658

ball of rubber bands 92 62 63 64 62 64 63.0 0.828

hollow, hard plastic ball 92 47 44 43 42 42 43.6 0.688

Cap.3
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COEFFICIENT OF RESTITUTION
The constant e is known as the coefficient of restitution; its value lies between 0
and 1 and depends on the material involved. When e = 0, the impact is termed
perfectly plastic; when e = 1 , the impact is termed perfectly elastic.

A

B

vA

vB

Line of
Impact

Before Impact

n

t

A

Bv’A

v’B

After Impact

vA

vB

n
t

In the case of oblique central impact, the velocities of the two colliding bodies
before and after impact are resolved into “n” components along the line of impact
and “t” components along the common tangent to the surfaces in contact.
1- In the t direction,

(vA)t = (v’A)t            (vB)t = (v’B)t

2- While in the n direction:

mA (vA)n + mB (vB)n = mA (v’A)n + mB(v’B)n

(v’B)n - (v’A)n = e [(vA)n - (vB)n]
Cap.3
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PROBLEM 13.195 – Thematic Exercise 6

10 mm

15o

20o

B C

D

A

A 25-g steel-jacket bullet is fired horizontally
with a velocity of 600 m/s and ricochets off a
steel plate along the path CD with a velocity
of 400 m/s. Knowing that the bullet leaves a
10-mm scratch on the plate and assuming that
its average speed is 500 m/s while it is in
contact with the plate, determine the
magnitude and direction of the average
impulsive force exerted by the bullet on the
plate.

1. Draw a momentum impulse diagram: The diagram shows the particle, its
momentum at t1 and at t2, and the impulses of the forces exerted on the particle
during the time interval t1 to t2.

Cap.3
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PROBLEM 13.195 – solution 1/2

2. Apply the principle of impulse and momentum: The final momentum mv2 of
the particle is obtained by adding its initial momentum mv1 and the impulse of the
forces F acting on the particle during the time interval considered.

mv1 +F t = mv2
F is sum of the impulsive forces (the forces that are large enough to produce a 
definite change in momentum).

+ =
x

y

Fx t

Fy t

m v1 x
y

15o

x

y

m v2

20o

3. Impulsive time determination: The impulsive time may be determined from
the bullet average velocity.

Since the bullet leaves a 10-mm scratch and its average speed is 500 m/s, the
time of contact t is: t = (0.010 m) / (500 m/s) = 2x10-5 s
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48

PROBLEM 13.195 – solution 2/2

4. Apply the principle of impulse and momentum.

+ =
x

y

Fx t

Fy t

m v1 x
y

15o

x

y

m v2

20o

mv1 +F t = mv2c

X: (0.025 kg)(600 m/s)cos15o+Fx2x10-5s= (0.025 kg)(400 m/s)cos20o

Fx = - 254.6 kN

Y: -(0.025 kg)(600 m/s)sin15o+Fy2x10-5s=(0.025 kg)(400 m/s) sin20o

Fy = 365.1 kN
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KINETICS OF PARTICLES
NEWTON’S SECOND LAW - system of particles

Denoting by m the mass of a particle, by  F the sum, or resultant, of the forces
acting on the particle, and by a the acceleration of the particle relative to a
newtonian frame of reference, we can write:

mi – generic mass material point;
ai – generic acceleration material point;
fij – exerted force by point j into point i;
Fi – External forces resultant over point i;
ri – point i vector position.

F =  ma

Internal resultant forces exerted over point i is:  
1



n

j

ijf


Admitted:  fii=0

  Fi f m aij
j

n
i i 




1
.Newton’s second law:

ri

X

Y

Z

mi

m2

m1

m3

mn

Fi

ai

f3n

fn3

O
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NEWTON’S SECOND LAW – system of particles

  Fi f m aij
j

n
i i 




1
.

     r F r f r m ai i i ij
j

n
i i i    




1
.

Moments of all forces acting on the particle i:

All forces acting on the particle i:

Moments of all internal forces in the system of particles:

  jiijjijiji frrfrfr




(ri x Fi ) =  (ri x miai)i =1

n

i =1

n

Conclusion: By the 3rd Newton’s law:  fij=-fji, 
so the product will vanish, because vectors are 
parallel.

ri

X

Y

Z

mi

Fi

ai

O

ri

X

Y

Z

mi

m2

m1

m3

mn

Fi

a
f3n

fn3

O
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NEWTON’S SECOND LAW – system of particles

    
f r fij

j

n

i

n
i ij

j

n

i

n

 
   

11 11
0 0      

Taking into account all the system of particles:

 F mai
i

n
i i

i

n

 
 

1 1

   r F r mai i
i

n
i i i

i

n
  

 
 

1 1

Doing the summation of the previous equations for all system particles:

The linear momentum L and the angular momentum Ho about FIXED point O
are defined as:

 
 L m vi i

i

n





1

 



n

i
iii vmrH

1
0



differentiating, it can be shown that


 
L F  

 
H Mo o 

This expresses that the resultant and the moment resultant about O of the
external forces are, respectively, equal to the rates of change of the linear
momentum and of the angular momentum about O of the system of particles.
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ANGULAR AND DYNAMIC MOMENT ON
MASS CENTER “G” OF A SYSTEM OF PARTICLES

M r m rcm i i
i

n

. 



1

 F M a
cm

 .

where M represents the total mass:   mi

Being the centroidal coordinate system parallel to the Newtonian system (in
translation with respect to the newtonian frame Oxyz), it is possible to write the
value of the angular momentum of the system about its mass centre G:

'
'

'
1

'

' SiiS

n

i
i

SSystemCM vmrH 





''
1

''
1

''
1'

''''''
SiiS

n

i
iSiiS

n

i
iSiiS

n

i
iCM

SSystem
CM amrvmramrKH   



Differentiating the last equation, the dynamic moment will be calculated according to:

CM
X’

Y’

Z’

X
Y

Z

CMr

ir


1r


'
3r
'

1r


mivi
’ mivi
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EQUALTITY OF THE ANGULAR MOMENTUM
ON “MASS CENTER” for different coo. systems

 
fixoCMfixoiiS

n

i
iCM

sistema
CM aamrKH   


'

1'
'

Substituting the acceleration expression into the angular momentum expression:























n

1=i

1
'

1

'
1

'
1

=       

'

''

CM

n

j
ijiS

n

i
i

CMS

n

i
iiiiS

n

i
iCM

M

fFr

armamrK





The following demonstration will be used to show that the angular
momentum relative to the centroidal position is equal when calculated
relative to the Newtonian reference or relative to a parallel moving system.

Being ai’ the acceleration on the moving system S’.   a a ai CM i  '

Equal zero!!!, because:

C
M

X’
Y’

Z’

X
Y

Z

CMr

ir


1r


'
3r
'

1r
 mivi

’ mivi





n

i
ii

n

i
iSm rmmc

1

'

1
'


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DEMONSTRATION

'
CMCM HH




  v v vi CM i  '

Using the concept of relative velocity:

'

1
'' i

n

i
iCM vmrH 





















 



'

1

'

1

'
ii

n

i
iCM

n

i
iiCM vmrvrmH 

Equal zero!!!

Calculating the angular momentum in mass centre:

CMCM HH '




Important Note: This property is valid for centroidal coordinate systems, and 
in general is not valid for other coordinate systems.





n

i
ii

n

i
iSm rmmc

1

'

1
'



C
M

X’
Y’

Z’

X
Y

Z

CMr

ir


1r


'
3r
'

1r
 mivi

’ mivi
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SPECIAL CASES

Case 1: Inexistence of external forces:

 L  0
 
Ko  0

Derivative of the linear momentum

Derivative of the angular momentum

Conclusion: Linear and angular momentum conservation.

Case 2: Existence of a unique external central force:

Conclusion: Angular momentum conservation.

Cap.3
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PROBLEM 14.106 - Thematic Exercise 7 

C
A B

6.5 km/h 20 Mg
30 Mg An 80-Mg railroad

engine A coasting at
6.5 km/h strikes a 20-Mg
flatcar C carrying a 30-Mg
load B which can slide along

the floor of the car (k =0.25). Knowing that the flatcar was at rest with its
brakes released and that it automatically coupled with the engine upon impact,
determine the velocity of the car C:

(a) immediately after impact;
(b) after the load has slid to a stop position relative to the car.

Attention!!!
Conservation of linear momentum of a system of particles is used to determine the
final velocity of the system of particles, immediately after coupling and after the
load slides to a stop position.

Cap.3



57

PROBLEM 14.106 (solution)

(a) Velocity immediately after impact

Conservation of linear momentum of a system of particles is used to
determine the final velocity of the system of particles.

W

N
F = kN

First consider the load B. 
We have F = kN = 0.20N. 
Since coupling occurs in t 0 : F t 0 

mB ( vB )O + Ft = mB ( vB )1

0 + 0 = mB ( vB )1

( vB )1 = 0
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PROBLEM 14.106 (solution)

We apply the principle of conservation of linear momentum to the entire system.

mAv0 mAv1 mB(vB)1= 0

mcv1

mA 
mA + mC

v1 = 5.2 km/h

LO = L1:   mA vO = (mA + mC) v1

v1 =                      vO =                    (6.5 km/h)    80
80 + 20

Cap.3
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PROBLEM 14.106 (solution)

(b) Velocity after load B has stopped moving in the car

The engine, car, and load have the same velocity v2. Using conservation of linear 
momentum for the entire system:

mA 
mA + mC + mB

v2 = 4 km/h

mAv0 mAv2 mB(vB)2

mcv2LO = L2:   mA vO = (mA + mC + mB) v2

v2 =                           vO =                        (6.5 km/h)    80
80 + 20 + 30

Cap.3
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WORK AND ENERGY PRINCIPLE
The kinetic energy T of a system of particles is
defined as the sum of the kinetic energies of
all the particles.

miv’i

x

y

z

O x’

y’

z’

G r’i Pi

T =       mivi
2

i = 1

n1
2

Using the centroidal reference frame Gx’y’z’ we note that the kinetic energy of 
the system can also be obtained by adding the kinetic energy             associated 
with the motion of the mass center G and the kinetic energy of the system in its 
motion relative to the frame Gx’y’z’ :

221 vm

T =    mv 2 +       miv’ii = 1

n1
2

21
2

T U T1 12 2 
The principle of work and energy can be applied to a system of particles as 
well as to individual particles.
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WORK AND ENERGY PRINCIPLE

T1 - kinetic energy of the system points (instant 1)
T2 - kinetic energy of the system points (instant 2) 
U12 - Work done by external forces and internal forces **, acting on the 

particles of the system

T U T1 12 2 

 
f fij ji However,             , the work of those internal forces may be different from zero, 

if the i and j point displacements are not the same.

T V T V1 1 2 2  

If all the forces acting on the particles of the system are conservative, the principle 
of conservation of energy can be applied to the system of particles
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PRINCIPLE OF IMPULSE AND MOMENTUM 
FOR A SYSTEM OF PARTICLES

x

y

O

(mAvA)1

(mBvB)1

(mCvC)1

x

y

O

(mAvA)2 (mBvB)
2

(mCvC)2

x

y
t1

t2
 Fdt

t1

t2
 MOdt

O

The principle of impulse and momentum for a system of particles can be
expressed graphically as shown above. The momenta of the particles at time t1
and the impulses of the external forces from t1 to t2 form a system of vectors
equipollent to the system of the momenta of the particles at time t2 .

t

F(N)

TIME

Impulse definition: High amplitude force acting on 
a small period of time.
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PRINCIPLE OF IMPULSE AND MOMENTUM 
FOR A SYSTEM OF PARTICLES (cont.)

If no external forces act on the system of particles, the systems of momenta shown
above are equipollent and we expect the conservation of momenta (linear and
angular):

x

y

O

(mAvA)1

(mBvB)1

(mCvC)1

x

y

O

(mAvA)2

(mBvB)2

(mCvC)2

L1 = L2         and (HO)1 = (HO)2 
Many problems involving the motion of systems of particles can be solved by
applying simultaneously the principle of impulse and momentum and the principle
of conservation of energy or by expressing that the linear momentum, angular
momentum, and energy of the system are conserved.
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PRINCIPLE OF IMPULSE AND MOMENTUM 
FOR A SYSTEM OF PARTICLES (cont.)

 
F L   

M Ko o
From the dynamic equilibrium equations:

  
Fdt L L

t

t

  2

1

2

1 12

2

1
0 oo

t

t

HHdtM




Time integration Time integration

Those quantities are the so called: linear impulse and angular impulse!!!

mA mB

mC

mA mB

mC


M dto

t

t

1

2



Fdt

t

t

1

2


Note: If there are no external forces acting on the system particles, it is expected to 
have linear and angular momentum conservation.
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PROBLEM 14.105

A
B C

480 m/s
x

A 30-g bullet is fired with a velocity of 480
m/s into block A, which has a mass of 5 kg.
The coefficient of kinetic friction between
block A and cart BC is 0.5. Knowing that
the cart has a mass of 4 kg and can roll
freely, determine:
(a) The final velocity of the cart and block;
(b) The final position of the block on the
cart.

1. Conservation of linear momentum of a system of particles is used to determine 
the final velocity of the system of particles. Conservation of linear momentum 
occurs when the resultant of the external forces acting on the particles of the system 
is zero. 

mO vO = (mO + mA + mC) vf 0.03(480) = (0.03 + 5 + 4) vf

vf  = 1.595 m/s

A
B C

mOvO

A
B C

(mO + mA + mC) vf
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PROBLEM 14.105 - SOLUTION

2. Conservation of linear momentum during impact is used to determine the kinetic 
energy immediately after impact. The kinetic energy T immediately after the collision 
is computed from T =     mivi

2.1
2

mO vO = (mO + mA) v’

0.03(480) = (0.03 + 5) v’    v’= 2.86 m/s

Kinetic energy after impact = T’ :

Conservation of linear mementum:

T ’=     (mO + mA)(v’)2 = 0.5(5.03)(2.86)2 = 20.61 N-m 1
2

A
mOvO

A

(mO + mA) v’
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PROBLEM 14.105 - SOLUTION

3. The work-energy principle is  applied to determine how far the block slides.
The final kinetic energy of the system Tf is determined knowing the final velocity 
of the system of particles (from step 1). The work is done by the friction force.

x

mg

N = mg 
F = mg

vf  = 1.595 m/s

T = 20.61 N-m 

The only force to do work is the friction force F.

T ’+ U1      2 = Tf :    20.61 - (mg)(x) = 11.48 20.61 - 0.5(5.03)(9.81)(x) = 11.48

x = 0.370 m

Final kinetic energy= Tf:

Tf =     (mO + mA + mC)(vf )2 = 0.5(9.03)(1.595)2 = 11.48 N-m 1
2
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VARIABLE SYSTEMS

(m)vA

mivi

A
S

B

(m)vB

mivi

A
S

B
S

 F t

 M t

For variable systems of particles, first consider a steady stream of particles, such as
a stream of water diverted by a fixed vane or the flow of air through a jet engine.
The principle of impulse and momentum is applied to a system S of particles during
a time interval t, including particles which enter the system at A during that time
interval and those (of the same mass m) which leave the system at B. The system
formed by the momentum (m)vA of the particles entering S in the time t and the
impulses of the forces exerted on S during that time is equipollent to the momentum
(m)vB of the particles leaving S in the same time t.

 

m

m

VA

VB
t=t t=t+T

Note: The entrance and exit points
should have the same mass.
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VARIABLE SYSTEMS – stationary systems
Equating the x components, y components, and moments about a fixed point of the
vectors involved, we could obtain as many as three equations, which could be
solved for the desired unknowns. From this result, we can derive the expression:

  
L F t L1 2     m V F t m VA B. .

  
 

   
F m

t V VB A  






   
F m V VB A  

In the limit, when t moves toward zero:

 m Q  Applications: Flux in a turbine,
flow into a pipe, ventilator, flow in a
helicopter.

Mass flow rate
of the stream
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VARIABLE SYSTEMS – non stationary systems
Consider a system of particles gaining mass by continually absorbing particles or
losing mass by continually expelling particles (as in the case of a rocket).
Applying the principle of impulse and momentum to the system during a time
interval t, we take care to include particles gained or lost during the time
interval. The action on a system S of the particles being absorbed by S is
equivalent to a thrust.

v

mv

m
vA

(m) va

u = vA - v

m

S
S

F t

S
(m + m)

(m + m)(v + v)

 


F mu mdV
dt  

mV mV F t m m V VA
    
       ( )( )

Note: u=VA-V
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PROBLEM  14-115 – Thematic exercise 8

A railroad car of length L and a mass m0 when 
empty is moving freely on a horizontal track
while being loaded with sand from a stationary
chute at a rate dm/dt = q. Knowing that the car
was approaching the chute at a speed v0 , 

determine:
(a) The mass of the car and its load after the car has cleared the chute;
(b) The speed of the car at that time.

...
...

...

To solve problems involving a variable system of particles, the principle of impulse 
and momentum is used.

(qt)v1 = 0

(m0 + qt)vm0v0Cap.4
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PROBLEM  14-115 - solving
We consider the system consisting of the mass m0 of the car and its contents at  t = 
0 and of the additional mass qt which falls into the car in the time interval t. 

Conservation of linear momentum in the horizontal direction

m0v0 = (m0 + qt) v
m0v0

(m0 + qt)v =

(qt)v1 = 0

(m0 + qt) vm0v0
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PROBLEM  14-115 - solving

v =
m0v0

m0 + qt Letting v =          =dx
dt

m0v0
m0 + qt

dx = x = m0v0
dt

m0 + qt
0

tm0v0 dt
m0 + qt

x =           [ln(m0 + qt)]  =            ln
m0v0

q 0

t m0v0
q

m0 + qt
m0

(qt)v1 = 0

(m0 + qt)vm0v0

Using the exponential form: m0 + qt = m0 e
qx/m0v0

where m0 + qt represents the mass at time t and after the car has moved through x.
Cap.4
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PROBLEM  14-115 - solution

(a) making x = L, we obtain the final mass:

mf = m0 + qtf = m0 e
qL/m0v0

(b) making t = tf in the velocity equation we obtain the final velocity:

v =                 =         v0  = v0 e
m0v0

m0 + qtf

m0
mf

-qL/m0v0

(qt)v1 = 0

(m0 + qt)vm0v0

Cap.4



Practical exercise
• Roof mounted turbines (Montana FORTIS model).

– Determine the forces produced by the wind on the top of the main
tower for the wind generator.

– The wind generator main characteristics are:
• Rated Power: 5800 [W];
• Rotor Diameter: 5 [m];
• Swept area: 19,63 [m2];
• Rated wind speed: 17 [m/s]
• Cut wind speed: 2.5 [m/s]

• Notes about roof installation:
– Turbine needs a laminar air flow to work properly, so the

existence of other buildings in the surrounding are not too good.
– The roof needs to be flat and strong enough to cope with the

weight.
– The roof needs to be stiff enough to counter vibrations that might

enter into the building.
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Practical exercise

• Define control volume for air (system of particles)
– Apply the principle of impulse and momentum.

– Assume Swept area=19,63 [m2];
– Assume volumetric flow rate = 329,12 [m3/s]

– Assume mass flow rate = 425,5 [kg/s]

– Forces that act on the system of particles

– Force that act on the column structure:

76

 AB VVmF





 VA=0VB=17[m/s]

airQm  

sweptAVQ 

X

][4,7234 NFx 

][4,7234 NFx 
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THEMATIC EXERCISE 9

Each of the four rotating arms of sprinkler
consists of two straight portions of pipe
forming 120 º angle. Each arm discharges
water at the rate of 20 [l/min] with
relative velocity of 18 [m/s]. Friction is
equivalent to a couple of M=0.375 [N.m].
Determine the angular velocity at which
sprinkler rotates.

Applying the principle of  impulse and momentum to the water sprinkler.

  0Vm


  tM  Vm 






 

4

Vm 






 

4

100

150120º
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THEMATIC EXERCISE 9 - resolution
Equating moments about axis of rotations:

 vmtM 4/ ofmoment  40 

w

vAv v 

knimematics: The velocity “v” of the water leaving the arm is the resultant of the
velocity “v´” relative to the arm and the velocity “vA” of the nozzle.

Avvv 
 ' ]/[18' smv BA




   smmCosw
Sinw

v

Sin
Cos

w
AOwvv

A

OA

/
0

)º60(100150
)º60(100

0
)º60(100

)º60(100150
0
0

0
0
0
































 










































O

A

B

O
B

A

150

120º

X

Y

12

2

1
0 oo

t

t

HHdtM


 

Vanish, because r//v01H

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THEMATIC EXERCISE 9 - solution











































































 0
2.06.15

0866.09

4
40

0

0
0
0

0
0

2
w
w

mAO
tM

H
tM

o



    




















































 


















 wwm
w
w

mSin
Cos

tM 0866.090866.02.06.152.0
0
0

0
2.06.15

0866.09

4
4

0
)º60(1.0

)º60(1.015.0
0
0

 wmtM 0475.034.2 

From the hydraulic equivalence:

 skg
s

lmQm
t
m /3/4

60
min1min]./[804.1 




 

Result:

   rpmsradw 400/42 
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SAMPLE PROBLEM - 2

A

B


C

V

VV1 2

The water coming through two parallel distinct
plates A and B flows continuously with a 
constant velocity of 30 [m/s]. The flow will be 
divided into two horizontal separate zones, due 
to the plane plate. Knowing volumetric flow rate
for each of the resultant fluxes, Q1=100 [l/min] 
and Q2=500 [l/min], determine:

a) The theta angle;
b) The total force exerted by the flux over the

plane plate.
Conservation of mass :

2_1_ OUTOUTIN mmm  

A

B


C

Vm

1 2

A

B


Pt

1 2

A

B


Vm1

1 2

Vm2

+ =

Impulse and Momentum impulse :
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SAMPLE PROBLEM – 2 – solution







































































0
cos.30

sin.30
01.0

0
01066,1

0
01033,8

0

0 1
3

2
3 

xx

y

vv
F

ININOUTOUT vmvmF 








 
F L 

Principle of impulse and momentum 



Aditional data: water=1000 (kg/m3), v2x=30(m/s), v1x=30(m/s)

Solution: Fy = 224(N),    41.8º

Note: The force exerted by the stream into the plate is a force of equal amplitude 
but from up to down.
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TEST EXERCISE
The water coming through a duct is inject
at point A at 25 [m/s], with a volumetric
flow rate of 1.2 [m3/min]. For the same
output velocity B, determine the resultant
forces exerted by the flux over the
support.

375 [mm]

75
 [

m
m

]

50
0 

[m
m

]

C

D

60º

Água =1000 [kg/m3]

VA

VB

 




















































































 F

t
mmtFmLtFL OUTIN



0
0
25

0
)º60sin(25
)º60cos(25

0
0
25

0
)º60sin(25
)º60cos(25

Solution: Applying the principle of impulse and 
momentum


















0
01,433

00,250
F


Applying the third Newton’s Law, the exerted resultant force over support is the oppsite vector.




















0

01,433
00,250

F

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RIGID BODIES – inertial matrices
Mass Matrix definition of a rigid body in a point, in reference to a specific
coordinate system – Mathematical operator which reports the inertial three
dimensional state of a body trough their moments and products of inertia .



















zz

yzyy

xzxyxx

I
PI
PPI

O

Px y

z

• The figure represents a rotational body, being
“O” the rotational instantaneous centre point.
• Each point “P” from the yellow arm has a linear
and angular momentum equal to:

vdmLd 
. vdmPOHd O


.

By direct mass integration:

dmvL
Body



 
Body

O dmvPOH 
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INERTIAL MATRICES – simple movements

 dmPOPOH
M

O  




Plane rotating, with “O” belonging to the axis of rotation:

Using vector components:


































z

y

x

=   and  







z
y
x

PO dm
xy
zx
yz

z
y
x

H
M

yx

xz

zy

O 












































     

   

 


















































z

y

x

M

MM

MMM

O

dmxy

dmyzdmzx

dmxzdmxydmzy

H




.

22

22

22



Introducing matrix formulation:

Conclusion: The borne matrix is symmetric – Inertial matrix


O P

VP
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INERTIAL MATRICES – General movements

In a more general movement: 
All general movement may be decomposed in a summation of a translation 
movement and a rotation about the mass centre.

The part of the kinetic moment relative to the second decomposed movement may 
be calculated in the same way, as calculated to the plane rotating movement.

Cap.5



86

INERTIAL MATRICES – rotating referential

X0

Y0

Z0

X1

Z1

Y1

u  u T uS o S1 1 0  .

Rotating referential: Transformation matrix



































1

1

1

1

0

0

0

0
  and  

z
y
x

u
z
y
x

u
SS



Knowing that:

The transformation matrix will be composed 
of the direct cosines from each S0 axis over 
S1 system.


















)1,0()1,0()1,0(
)1,0()1,0()1,0(
)1,0()1,0()1,0(

10

ZZCosZYCosZXCos
YZCosYYCosYXCos
XZCosXYCosXXCos

T

   T T
t

0 1 1 0 Being this matrix orthogonal, then:

 
0101

.
SOSO HTH


Kinetic moment will be calculated:
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INERTIAL MATRIX - change of referential
Angular momentum may be calculated according to:

 
   
     

 





H T H
T I
T I T

O S O S

O S S

O S
t

S

1 0 1 0

0 1 0 0

0 1 0 0 1 1









 

.

. .

. . .




       I T I TO S O S
t

1 0 1 0 0 1  . .

Inertial matrix may be calculated in a different coordinate system

Note: Knowing the inertial matrix in a discrete point, is possible to calculate 
the moment relative to any axis passing through that point.
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INERTIAL MATRIX - change of referential

Translation referential: Transformation matrix

By the Steiner theorem:

   
   















 
















 
 .

.........
........
......

.
.........
........
...... 2222

01

00
zy

M
zy

MII
SS CMCM

SOSO

X0

Y0

Z0

X1

Z1

Y1

Jacob Steiner  (1796-1863)
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INERTIA PRINCIPAL DIRECTIONS
In general, in a solid rigid body, the kinetic moment will not have the same
direction as the angular velocity vector. In the coincident cases, the directions
are known as the inertia principal direction. In those cases:

 IO .   

    I IO   1 0. 


Gives origin to the following equation system:

Being a homogeneous system, the only way to have solution different from
zero is to establish the condition of determinant equal to zero:

    det I IO   1 0

Conclusion: A third order polynomial equation will result, being the three
numerical solutions equal to the principal moments of inertia. For each principal
moment  we may expect an infinity of principal directions 
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THEMATIC EXERCISE 10 – MASS MATRIX
• Calculate the mass matrix (inertial

tensor) of the represented rectangular
prism at point (O).

• Determine the mass matrix at point (A),
relative to system S’, by referential
transformation.

• Determine the inertial principal
directions and the corresponding
principal moments of inertia, at point
(O).

x

y

z

x’

y’

z’

a
b

c

(O)

(A)

•Exercise data:
•m=12 mass unity [M]
•a=20 length unity [L]
•b=10 length unity [L]
•c=10 length unity [L]

Cap.5



91

THEMATIC EXERCISE -– MASS MATRIX
• Moments of inertia, point (O) system S:

•Exercise data:
•m=12 mass unity [M]
•a=20 length unity [L]
•b=10 length unity [L]
•c=10 length unity [L]
•m=(abc)

 

   

   

 2

22

22

33
0

3

0

3

0 0

3

0 0

3

0 0

2

0 0

2

22

22

22

2000

33

33

33

33

33

ML

cam

caabc

acbcab

dycbdzab

dyzbdzyb

dydzzbdzdyyb

dzdybzdzdyby

dzdybzy

dmzyI

ac

a cc a

a cc a
VV

V

m
xx


























































  





















 

   

   

 2

22

22

33
0

3

0

3

0 0

3

0 0

3

0 0

2

0 0

2

22

22

22

800

33

33

33

33

33

ML

cbm

cbabc

bcacba

dxcadzba

dxzadzxa

dxdzzadzdxxa

dzdxazdzdxax

dzdxazx

dmzxI

bc

b cc b

b cc b
VV

V

m
yy


























































  





















x

y

z

x’
y’

z’

a
b

c

(O)

(A)

dy

dz

dm=bdydz

dm=dV

dx

dm=adxdz
dz
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THEMATIC EXERCISE – MASS MATRIX
• Moments of inertia, point (O) system S:

x

y

z

x’

y’

z’

a
b

c

(O)

(A)

dy
dx

dm=dV

dm = cdxdy

 

   

   

 2

22

22

33
0

3

0

3

0 0

3

0 0

3

0 0

2

0 0

2

22

22

22

2000

33

33

33

33

33

ML

abm

ababc

bacabc

dxacdybc

dxycdyxc

dxdyycdydxxc

dydxcydydxcx

dydxcyx

dmyxI

ba

b aa b

b aa b
VV

V

m
zz


























































  




















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THEMATIC EXERCISE - – MASS MATRIX

• Products of inertia, system S:

x

y

z
x’

y’

z’

a
b

c

(O)

(A)

 

   

 2

22

0

22

0

2

0 0

2

0 0

600
4

22

22

22

2

2

ML

abm

abcba

abc

ybc

ydybc

dyxyc

dydxxyc

dydxcxy

dmxyP

a

a

a b

a b
V

m
xy

















 



















































 



















dy
dx

dm=cdxdy

 

   

 2

22

0

22

0

2

0 0

2

0 0

300
4

22

22

22

2

2

ML

bcm

cbabc

cba

zba

zdzba

dzxza

dzdxxza

dzdxaxz

dmxzP

c

c

c b

c b
V

m
xz

















 



















































 



















dy

dz

dm=bdydz

dm=adxdz

dz

 

   

 2

22

0

22

0

2

0 0

2

0 0

600
4

22

22

22

2

2

ML

acm

cabac

cab

zab

zdzab

dzyzb

dzdyyzb

dzdybyz

dmyzP

c

c

c a

c a
V

m
yz

















 



















































 


















z
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THEMATIC EXERCISE – MASS MATRIX

• Mass matrix, point (O), system S:

 













































2000600300
600800600
3006002000

zzyzxz

yzyyxy

xzxyxx

SO

IPP
PIP
PPI

I

x

y

z

x’
y’

z’

a
b

c

(O)

(A)

• Mass matrix, point (A), System S:
– Parallel transposition, from (O) System S, to (A) system S.

   

 

 

125 50 25 125 50 25
50 50 50 50 50 50
25 50 125 25 50 125

2000 600 300 0 100 50
600 800 600 12 100 0 0
300 600 2000 50 0 0

2000 600 300
600 800 600
300 600 2000

A OS S

A S

A S

I I m m

I

I

      
            
         

    
         
       

 
 






x

y

z


















5
10
5

GO





















5
10
5

GA

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THEMATIC EXERCISE – MASS MATRIX
• Mass matrix, point (A), System S’:

– Rotation transposition, from point (A) System S, 
to point (A) system S’.

       

 

 

' ''

'

'

0.447 0.894 0 2000 600 300 0.447 0.894 0
0.894 0.447 0 600 800 600 0.894 0.447 0

0 0 1 300 600 2000 0 0 1

560.0 120.0 670.82
120.0 2240.0 0
670.82 0 2000.0

t
A S S A S SS S

A S

A S

I T I T

I

I

 

       
             
           
 
   
  

   
 

 














 
















 


100
0447.0894.0
0894.0447.0

100
0cos)sin(
0)sin(cos

' 


kjiT SS



x

y

z

x’
y’

z’

a
b

c

(O)

(A)

x

y

z



4,º63







b
aarctg
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THEMATIC EXERCISE – MASS MATRIX
• Principal moments of inertia

– Calculated by determinant condition for
indeterminate solutions

     0det 1  IIO 

x

y

z

1

a
b

c

(O)

x2

3

0
100
010
001

2000600300
600800600
3006002000

det 





















































 

0
2000600300

600800600
3006002000

det 










































032
2

1
3  AAA 

48001  zzyyxx IIIA

  6222
2 1039.6  zxyzxyxxzzzzyyyyxx PPPIIIIIIA

9222
3 10472.12  xzyzxyxyzzxzyyyzxxzzyyxx PPPPIPIPIIIIA

Numerical Solution HP48GX:
->Solve-> polynomial-> 001

2
2

3
3  axaxaxa













00.2300
47.2210

53.289

3

2

1





• The characteristic polynomial:
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THEMATIC EXERCISE – MASS MATRIX
• Principal directions:

– Calculated with the indeterminate homogeneous system.

     0.1


  IIO






















































0
0
0

2000600300
600800600
3006002000

iz

iy

ix

i

i

i

w
w
w






PIS (Possible Indeterminate System)

• 1st principal direction:
– Specify (wix=1), i=1 and extract two equations from the system above






















































0
0
0

2000600300
600800600
3006002000

iz

iy

ix

i

i

i

w
w
w






























































300
600

47.1710600
60047.510

300
600

2000600
600800

1

1

iz

iy

iz

iy

w
w

w
w





















1
35.2

iz

iy

w
w




































































364.0
857.0
364.0

ˆ
ˆ
ˆ

1
35.2
1

1

1

1

1

1

1

z

y

x

z

y

x

w
w
w

w
w
w
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THEMATIC EXERCISE – MASS MATRIX
• 2nd principal direction:

– Specify (wix=1), i=2 and extract two equations from the system bellow






















































0
0
0

2000600300
600800600
3006002000

iz

iy

ix

i

i

i

w
w
w











































606.0
515.0
606.0

ˆ
ˆ
ˆ

2

2

2

z

y

x

w
w
w

• 3rd principal direction:
– Specify (wix=1), i=3 and extract two equations from the system bellow






















































0
0
0

2000600300
600800600
3006002000

iz

iy

ix

i

i

i

w
w
w







































7071.0
0

7071.0

ˆ
ˆ
ˆ

3

3

3

z

y

x

w
w
w

x

y

z

1

a
b

c

(O)

x2

3
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STUDY CASE

A rotative transfer machine, for shoes industry, with four different working
points will be working with a special mechanism – Malta crossing system. The
rotating table will be submitted to a radial force of 8000 [N] and its own body
load should not pass through 1800 [kg]. The external dimension should not be
grater than 2000[mm]. Its productivity factor should be grater than 13 shoes
per minute.
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STUDY CASE – solution

System power dimensioning: 1. The required power should be calculated
by the product of the maximum binary
required and the angular velocity.

2. The required maximum binary may be
calculated by the dynamic momentum (
time derivative of the kinetic momentum
or angular momentum).

3. The electric motor power will be
calculated by the product of the motor
out binary and the angular velocity. This
angular velocity is connected to the
productivity solution.

 , ( / ) 1415 rad s

  
K H H ICM CM CM 
























   ,     
0
0



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STUDY CASE – solution
Kinematic analysis: Angular velocity and acceleration 

The maximum value of acceleration will 
provide the maximum binary. This value 
will be expected to =-11.7º, being equal 
to 10,786 (rad/s2)

B Imá x zz 

  )87,75(kg.m
8

2int
22





 extMIzz

The inertial moment may be calculated by:

 NmMK F
CM 46,946



Knowing that: F
r2 r2=0,204(m)

F=4643 (N)

3rd Newton’s law:
 B Nmmotor  1579 5,

   cvWBPower motor 32235415,15,1579.  

Final step: motor catalogue.

CMCM KM


  
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KINEMATICS OF RIGID BODIES
1- Translation
2- Fix point rotation
3- General plane motion
4- Three-dimensional movement around a fix axis
5- General motion

ra
rb

rb/a

  r r rA A B B/

1- Translation

  v vA  0 B

Differentiating in relation to time:

 a aA  B

Differentiating one more time:

Reference position

A1

B1

Initial position Final position

A2

B2B’

A’vA

vB

vA

vB

vA

vB

Initial position Final position

A2

B2

A1

B1 A’

B’

vA

vB

vB

vB
vA

vA

trajectory
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FIX POINT ROTATION

X

Y2- Fix point rotation

Vector velocity is always tangent to the trajectory. In
intrinsic coordinates we can write:

v ds
dt



  v w r 

 
w k 

     a w r w w r     ( )

Angular velocity parallel to the fixed axis rotation

Linear velocity results from the external product 
definition

Angular acceleration        is parallel to the 
fixed axis rotation:

w

Note: Movement may be effectively discovery by 
one of two possibilities:

1-
2-  ( ,  )   

 t 




OAr

o

Final position

Initial position

vA

vA

A1
A2

x

y

trajectory




OAr

o

Final position Intial position

A1
A2

x

y

 r
 

r


r
  r

 

Aa

trajectory

Aa
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FIX POINT ROTATION
2- Fix point rotation : Equations

Uniform rotation

Uniform accelerated rotation

   0 t

    0 t

     0
2 2  /t t

  V wk rB A B A/ / 

Relative velocity

BAwVV AB




Conclusion:
1- General expression, valid for two points belonging to the same rigid body.

2- Angular velocity is independent from the reference point.
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RIGID BODY – kinematics: position and velocity
In rigid body translation, all points of the body have
the same velocity and the same acceleration at any
given instant.

Considering the rotation of a rigid body about a
fixed axis, the position of the body is defined by the
angle  that the line BP, drawn from the axis of
rotation to a point P of the body, forms with a fixed
plane. The magnitude of the velocity of P is:

v =       = r sin ds
dt

.
where  is the time derivative of .

.

The velocity of P is expressed as

where the vector

v =       =  x rdr
dt

 = k = k
.

 is directed along the fixed axis of rotation and represents the angular velocity
of the body.

yA

r
P

O

A
’

 

B

z
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RIGID BODY – kinematics: acceleration

x
yA

r
P

O

A
’

 

B

z
v =       =  x rdr

dt  = k = k
.

The vector  represents the angular acceleration of the body and is directed along 
the fixed axis of rotation.

Denoting by  the time derivative d/dt of the 
angular velocity, we express the acceleration of P as:

differentiating  and recalling that k is constant in magnitude and direction, we 
find that:

a =  x r +  x ( x r)

 = k = k = k. ..
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PLANE ROTATION

x

y

O

 = k

v = k x r

r

Consider the motion of a representative slab located
in a plane perpendicular to the axis of rotation of the
body. The angular velocity is perpendicular to the
slab, so the velocity of point P of the slab is:

x

y

 = k

v = k x r
where v is contained in the plane of the slab. The
acceleration of point P can be resolved into
tangential and normal components, respectively
equal to:

at = k x r        at = r

an= -2 r           an = r2

 = k

at = k x r

O an= -2 r

P

P
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ANGULAR VELOCITY AND ACCELERATION
The angular velocity and angular acceleration of the slab can be expressed as

or

 =  d
d

Two particular cases of rotation are frequently encountered: uniform rotation and
uniformly accelerated rotation. Problems involving either of these motions can be
solved by using equations similar to those for uniform rectilinear motion and
uniformly accelerated rectilinear motion of a particle, where x, v, and a are replaced
by , , and .

 
dt
d

  2

2

dt
d

dt
d
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GENERAL PLANE MOTION

Plane motion         =       Translation with A     +     Rotation about A

The most general plane motion of a rigid slab can be considered as the sum of a
translation and a rotation. The slab shown can be assumed to translate with point A,
while simultaneously rotating about A. It follows that the velocity of any point B of
the slab can be expressed as:

vB = vA + vB/A

where vA is the velocity of A and vB/A is the relative velocity of B with respect to A.

A

B

vA

vB

A

B

vA

vA

B

y’

x’

vB/A

rB/AA

(fixed)
k

3- General plane motion
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GENERAL PLANE MOTION – velocity

Denoting by rB/A the position of B relative to A, we note that

vB/A = k x rB/A vB/A = (rB/A )= r
The fundamental equation relating the absolute velocities of points A and B and the
relative velocity of B with respect to A can be expressed in the form of a vector
diagram and used to solve problems involving the motion of various types of
mechanisms.

A

B

vA

vB

A

B

vA

vA

B

y’

x’

vB/A

rB/AA

(fixed)
k
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INSTANTANEOUS CENTRE OF ROTATION

C

A

B

vA

vB

vA

vB

CAnother approach to the solution of problems involving
the velocities of the points of a rigid slab in plane motion
is based on determination of the instantaneous centre of
rotation C of the slab.
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GENERAL PLANE MOTION - acceleration

Plane motion       =      Translation with A     +     Rotation about A

aB = aA + aB/A

The fact that any plane motion of a rigid slab can be considered the sum of a
translation of the slab with reference to point A and a rotation about A is used to relate
the absolute accelerations of any two points A and B of the slab and the relative
acceleration of B with respect to A.

A

B

aA

aB
A

B

aA

aA

A

B

x’

(aB/A)n

kk

(aB/A)t

aB/A

where aB/A consists of a normal component (aB/A )n of magnitude r2 directed toward 
A, and a tangential component (aB/A )t of magnitude r perpendicular to the line AB.
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GENERAL PLANE MOTION – acceleration

The fundamental equation relating the absolute accelerations of points A and B and
the relative acceleration of B with respect to A can be expressed in the form of a
vector diagram and used to determine the accelerations of given points of various
mechanisms.

(aB/A)n

(aB/A)t

aA

aB aB/A
Important note:
The instantaneous centre of rotation C cannot be used
for the determination of accelerations, since point C ,
in general, does not have zero acceleration.

Plane motion       =      Translation with A     +     Rotation about A

A

B

aA

aB
A

B

aA

aA

A

B

x’

(aB/A)n

kk

(aB/A)t

aB/A
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THEMATIC EXERCISE 11
The “four body” mechanism represented in the left
figure has three bars, connected by two distinct points
B and C. For the represented specific time, the bar CD
presents an angular acceleration of CD=5 rad/s2 and
angular velocity equal to wCD=2 rad/s, both
anticlockwise. Determine the angular velocity and
acceleration of the bar AB.

D

C
Cv

60º

CD

x

y

DCCDDDCDC rvvvv 
 /

 mrDC


































0
39.0
225.0

0
)60sin(45.0

)60cos(45.0


 smv C /
0

45.0
8.0

0
39.0
225.0

2
0
0

0
0
0









































































Velocity analysis of bar CD (fixed plane rotation):

Velocity analysis of bar BC (general plane rotation):

CBBCCCBCB rvvvv 
 /

mrCB

















0
0

6.0


srad

BC

BC /0
0
























smv C /
0

45.0
8.0






















 smv BC

BC

B /
0

6.045.0
8.0

0
0

6.0
0
0

0
45.0
8.0











































































 



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THEMATIC EXERCISE (cont.)
Being the motion of the bar AB considered as a fixed point plane 
rotation, a velocity and acceleration analysis may be done:

A

B

x

y AB

45º

Bv

mrAB


































0
53.0
53.0

0
)45sin(*75.0
)45cos(*75.0



 smv AB

AB

AB

B /
0

53.0
53.0

0
53.0
53.0

0
0

0
0
0



































































 







ABABAABAB rvvvv 
 /

The velocity of point B calculated by this two expression should be equal.




































0
*6.045.0

8.0

0
*53.0
*53.0

BCAB

AB




srad
srad

BC

AB

/083.2
/51.1





 s/rad

083.2
0
0

BC





















s/rad
51.1
0
0

AB





















D

C

60º

CD

x

y

CD

 DCCDCD r


DCCD r


Ca

Acceleration analysis of bar CD (fixed plane rotation):

 
   nDCtDCD

DCCDCDDCCDDC

aaa
rraa

//





 

sradCD /
2
0
0


















 2/
5
0
0

sradCD


















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THEMATIC EXERCISE (cont.)

2/
0
725.2
05.1

0
6.1

9.0

0
125.1
95.1

0
39.0
225.0

2
0
0

2
0
0

0
39.0
225.0

5
0
0

0
0
0
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
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
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
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
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
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









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

 CBBCBCCBBCCB rraa 
 

2/
0
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0
0
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0
*6.0
0

0
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0
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0
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Acceleration analysis of bar BC (general plane rotation):
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Acceleration analysis of bar AB (fixed plane rotation):
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THEMATIC EXERCISE (cont.)
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The acceleration of point B calculated by this two expression should be equal, then:
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VECTOR DIFFERENTIATION REGARDING 
A MOVING COORDINATE SYSTEM

•The rate of change of a vector is the same with respect to a fixed frame of
reference and with respect to a frame in translation.
•The rate of change of a vector with respect to a rotating frame of reference is
different.
The rate of change of a general vector
Q with respect a fixed frame OXYZ
and with respect to a frame Oxyz
rotating with an angular velocity  is:

X

Y

Z

x

y

z

O

i
j

k

Q


A

(Q)OXYZ = (Q)Oxyz +  x Q
. .

The first part represents the rate of
change of Q with respect to the
rotating frame Oxyz and the second
part,  x Q, is induced by the
rotation of the frame Oxyz. ANGULAR VELOCITY OF THE 

MOVING REFERENCE SYSTEM.
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PLANE MOVEMENT (velocity)

X

Y

x
y

O
r



vP’ =  x r

P P’

vP/F = (r)Oxy
.

Consider the  two-dimensional analysis of a 
particle P , moving with respect to a frame F 
rotating with an angular velocity  about a 
fixed axis. The absolute velocity of P can be 
expressed as:

vP = vP’ + vP/F

Where: vP = absolute velocity of particle P

vP’ = velocity of point P’ of moving frame F coinciding with P

vP/F  = velocity of P relative to moving frame F

The same expression for vP is obtained if  the frame is in translation rather than 
rotation.
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PLANE MOVEMENT (acceleration)
When the frame is in rotation, the expression for
the acceleration of P contains an additional term ac
called the complementary acceleration or Coriolis
acceleration. aP = aP’ + aP/F + ac

Where: aP = absolute acceleration of particle P

aP’ = acceleration of point P’ of moving frame F 
coinciding with P
aP/F  = acceleration of P relative to moving frame F
ac = 2 x (r)Oxy = 2 x vP/F

= complementary, or Coriolis, acceleration

.

X

Y

x
y

O
r



vP’ =  x r
P P’

vP/F = (r)Oxy
.

Since  and vP/F are perpendicular to each other in the case of plane motion, the
Coriolis acceleration has a magnitude ac = 2vP/F . Its direction is obtained by rotating
the vector vP/F through 90o in the sense of rotation of the moving frame. The Coriolis
acceleration can be used to analyze the motion of mechanisms which contain parts
sliding on each other.
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ACCELERATION – general equations

P

r

 

O

In three dimensions (3D), the most general displacement
of a rigid body with a fixed point O is equivalent to a
rotation of the body about an axis through O. The angular
velocity  and the instantaneous axis of rotation of the
body at a given instant can be defined. The velocity of a
point P of the body can be expressed as:

v =       =   x rdr
dt

Differentiating this expression, the acceleration is

Since the direction of  changes from instant to instant, the angular acceleration 
is, in general, not directed along the instantaneous axis of rotation.

a =  x r +  x ( x r)
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GENERAL MOTION

B
rB/A

 

O

A

X

Y

Z

X’

Y’

Z’
rA

The most general motion of a rigid body in space
is equivalent, at any given instant, to the sum of a
translation and a rotation. Considering two
particles A and B of the body

where vB/A is the velocity of B relative to a frame
AX’Y’Z’ attached to A and of fixed orientation.
Denoting by rB/A the position vector of B relative
to A, we write:

vB = vA + vB/A

vB = vA +  x rB/A

where is the angular velocity of the body at the instant considered. The  
acceleration of B is, by similar reasoning

aB = aA + aB/A aB = aA +  x rB/A +  x ( x rB/A)or
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PROPOSED  EXERCISES
EP 15.4 – A small rotating pulley is attached
to a electric motor with nominal speed equal
to 1800 [r.p.m.]. When the electric motor is
turned on, all the assembly will take the
regime speed after 5 [s]. When the motor is
off, the system takes 90 [s] to stop. If a
uniform accelerated motion is considered,
calculate the number of motor revolutions in
both conditions:
a) For normal operations conditions
b) For stoping after turning off.

A

B

G

C

D

F E

100

100

100

175

175
100

EP 15.8 - The element rigid body
shown in the left figure is made with a
welded axis ABC to the rectangular
plate DEFH. The assembly turns with a
uniform angular velocity 9 [rad/s]
around the ABC axis. Knowing that the
movement is anticlockwise, when
looking from “C”, determine the
velocity and acceleration of the vertices
F.Cap.5
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PROPOSED EXERCISES
EP 15.44- The crank AB has a constant
angular velocity of 200 [r.p.m.] in the
anticlockwise sense. Determine the angular
velocity of the bar BD and the speed of the
cursor D, when:
a) =0º
b) =90º
c) =180º
15

0

A

B D

X

Y

EP 15.60 – Knowing that the cursor velocity 
is equal to 1.8 [m/s] from bottom to top, 
determine for the illustrated configuration:
a) The angular velocity from the element AD
b) The velocity of point B
c) The velocity of point A

A

B

D

E

300

30º

160

200

X

Y
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PROBLEM 15.248 – Thematic exercise 12

Knowing that at the instant shown crank BC has a 
constant angular velocity of 45 rpm clockwise,
determine the acceleration :
(a)Of point A;
(b)Of point D.

1.  Determine velocities in a body rotating about a fixed axis:
In vector form the velocity in the body is given by:

v =  x r
Where v ,  , and r are the velocity of the point, the angular 
velocity of the body, and the position vector from the axis to 
the point. The magnitude of the velocity is given by:

v = r 
where v, r, and  are the magnitudes of the corresponding 
vectors.



v = r 

x

y

r

Calculating the 
velocity of point B
in crank BC.

BC = (45 rpm)(                       ) = 1.5 rad/s2 
60

rad
rev s

min

vB = BC rB/C = (1.5 rad/s)(4 in) = 18.85 in/s
vB = 18.85 in/s 

4 in.
8 in.

8 in.

D

CB

A


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PROBLEM 15.248 (solution)
2.  Determine velocities in a body under general plane motion:
Velocities can be determined either by method of instantaneous center of rotation, or 
by considering the motion of the body as the sum of a translation and a rotation.

A

B

vA

vB
=

A

B

vA

vA

A
B

vA

vB

C

vB = vA + vB/A vB/A =  x rB/A

+
A

B vB/A


rB/A

Since point A is forced to move in the
vertical direction, and the direction of
the velocity of point B is up, the
angular velocity of bar AD is zero (in
that instant): wAD = 0

CB

BC
vB

B

A

vB

vA

D
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PROBLEM 15.248 (solution)

3. Determine accelerations in a body rotating about a fixed axis.
Calculating the acceleration of point B in crank BC. Since the angular velocity of
crank BC is constant, BC = 0 and (aB)t = 0. The normal component of the
acceleration at point B is:
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





 

 2

2

/
0
0
83,88

0
0

4

0
4

0
0
0

0
0
4

0
0

0
0

sin
w

w
www

BCwwa

BC

BC

BCBCBC

B


















































































































































CB

BC
(aB)n 

BC = 0
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y
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PROBLEM 15.248 (solution)
4. Determine accelerations in a body under general plane motion:

Notes: 
- The acceleration aA must be vertical;
- AD is assumed CCW and wAD vanish in that instant.
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From system 1) wz=-12.82 [rad/s2] and from system  2) aAy=-51.28 [in/s2].
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PROBLEM 15.248 (solution)
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4. Determine accelerations in a body under general plane motion:

Knowing that  wz=-12.82 [rad/s2] and  wz=0 [rad/s], we conclude:
.

(aD)x = 88.82 - ( 8 )(- 12.82 ) sin 60o

(aD)x =  177.7 in/s2

(aD)y = 0 - ( 8 )(- 12.82 ) cos 60o

(aD)y =  51.3 in/s2 aD = 184.9 in/s2 16.1o
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0,203

0,203
0,0508


D E

B

A

PROBLEM EP 15.90
The two cylinders air compressor
presents two 0.203 [m] long arms
BD and BE. Knowing that the
length of arm AB is equal to 0.0508
[m], and that it rotates at a constant
rate  = 1800 [rpm], in the
clockwise sense. Determine the
pistons acceleration when  = 0o.
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PROBLEM EP 15.90 - ANALYTICAL SOLUTION
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1. Determine VELOCITY of point B:

2. Determine VELOCITY of point D and ANGULAR VELOCITY of arm BD:
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3. Determine ACCELERATION of point B
 





























































































0
)cos(0.1805
)sin(0.1805

0
)cos(0508.0
)sin(0508.0

5.188
0
0

5.188
0
0

0

111












B

AB

a

BAwwBAwaa

]/[
0

0.1805
0

º0 2smaB



















 
 
 

 
 

























































































































































)cos(203.0
)sin(203.0)sin(1805

)cos(203.0)sin(203.0)cos(1805

0
cos203.0
sin203.0

0
0

0
0

0
cos203.0
sin203.0

0
0

0
)cos(0.1805
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PROBLEM EP 15.90 
NUMERICAL SOLUTION

Cap.5
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PROBLEM 15-250

0.15 m

0.15 m

B C

2

1

A x

y

z

FD E

A disk of 0.15-m radius rotates at a constant rate
2 with respect to plate BC, which itself rotates 
at the constant rate 1 about the y axis.
Knowing that 1 = 2 = 3 rad/s, determine, for 
the position shown the velocity and acceleration 
(a) of point D, (b) of point F.

1.  Determination of the velocities in general motion of a rigid body:
vB = vA + w x rB/A

Where vB is the velocity of point B, vA is the (known) velocity of point A, w is the 
angular velocity of the body with respect to a fixed frame of reference, and rB/A is 
the position vector of B relative to A.

 =  1 +  2 = 3 j + 3 j = 6 j [rad/s] vD = vC +  x CD
vD = (3 j) x (0.15 i) + (6 j) x (-0.15 i)
vD = 0.45 k [m/s]

(a)  Point D:

Cap.5
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PROBLEM 15-250 - solution
2.  Determine accelerations in general motion 
of a rigid body:

aB = aA +  x AB + w x (w x AB)
Where aB is the acceleration of point B, aA is the 
(known) acceleration of point A,  and w are the 
angular acceleration and angular velocity of the 
body with respect to a fixed reference frame, and 
AB is the position vector of B relative to A.

x

y

X’

Y’

Z’

rA

rB/A



B

A

z



aD = aC +  x rD/E +  x ( x rD/E)
aD = 1 x (1 x rC/B) +  x ( x rD/E)
aD = (3 j) x (3 j x 0.15 i) + (6 j) x [(6 j) x (-0.15 i)]
aD = -1.35 i + 5.4 i  aD = 4.05 i m/s2

Cap.5
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PROBLEM 15-250 - solution

vF = vC +  x CF
vF = (3 j) x (0.15 i) + (6 j) x (0.15 i)
vF = -1.35 k [m/s]

(b)  Point F:

0.15 m

0.15 m

B C

2

1

A x

y

z

FD E

aF = aC +  x EF +  x ( x EF)
aF = 1 x (1 x BC) +  x ( x EF)
aF = (3 j) x (3 j x 0.15 i) + (6 j) x [(6 j) x (0.15 i)]
aF = -1.35 i - 5.4 i  aF = -6.75 i m/s2

Cap.5
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PROBLEM 15-256

1

X

Y

Z

4 in

4 in

16 in



E

AB

C
D

Rod BC of length 24 in. is connected by ball-and-
socket joints to a rotating arm AB and to a collar C
that slides on the fixed rod DE. Knowing that
length of arm AB is 4 in. and that it rotates at a
constant rate 1 = 10 [rad/s], determine the velocity
of collar C when  = 90o.



v = r 

x

y

r

Cap.5

1.  Determine velocities in a body rotating about a fix axis:
In vector form, the velocity of a point in the body is given by:

v = w x r
Where v , w , and r are the velocity of the point, the angular 
velocity of the body, and the position vector from the axis to the 
point.



137

PROBLEM 15-256 - solution

2.  Determine velocities in general motion of a rigid body:
vB = vA +  x rB/A

Where vB is the velocity of point B, vA is the (known) velocity 
of point A, w is the angular velocity of the body with respect to 
a fixed frame of reference, and rB/A is the position vector of B
relative to A.

X

Y
1

A

B

Z

vB

Determine the velocity of point B when  = 90o:

1 = 10 k [rad/s]
rB/A = AB = - 4 j [in]

vB = 1 x AB

vB = 10 k x (- 4 j )

vB = ( 40 in/s) i

vB = ( 40 in/s) i
vC = vC k

 = x i + y j + z k

rC/B = 4 i - 12 j + 20.4 k

1

Y
A

B

X
Z

4 in

24 in

E

CD

20.4 in

Cap.5
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PROBLEM 15-256 - solution

x

y

X’

Y’

Z’

rA

rB/A



B
A

z

vC = vB +  x rC/B

vC k = ( 40 in/s) i +   i j k
x y z
4  -12  20.4

vC k = (40) i + (20.4y + 12z)i + (-20.4x+ 4z)j + (-12x - 4y)k

Equate coefficients of i, j, k : 0 = 40 + 20.4y + 12z

0 = -20.4x+ 4z

vC = -12x - 4y

Solve for vC : (First eliminate wz and then eliminate (3wx + wy). )

vC = 7.84 [in/s] vC = 7.84 k [in/s]
Cap.5



139

PROBLEM 15-259

x

y

z

1

 B

A
Rod AB of length 125 mm is attached to a vertical rod
that rotates about the y axis at the constant rate 1 = 5
rad/s. Knowing that the angle formed by rod AB and
the vertical is increasing at the constant rate d/dt = 3
rad/s, determine the velocity and acceleration of end B
of the rod when  = 30o.

1. To determine the velocity and acceleration of a point of a body rotating about a 
fixed point (Determine the angular velocity w of the body):
The angular velocity w with respect to a fixed frame of
Reference is often obtained by adding two component angular
velocities w1 and w2.

O

2

1



1 = 5 j rad/s    
2 = d/dt = 3 rad/s,     2 = 3 k rad/s

 = 1 + 2 = 5 j + 3 k rad/s

Cap.5
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PROBLEM 15-259 - solution

    www oxyzOXYZ  

1b. Compute the velocity of a point of the body:
The velocity v of point B in the body is given by: v = w x r
where r is the position vector connecting the fixed point O to point B.

The velocity of end B:

rB/A = 0.125 sin30o i - 0.125 cos30o j = 0.0625 i - 0.1083 j

vB =  x rB/A =

vB = 0.325 i + 0.188 j - 0.313 k m/s

i j k
0             5       3

0.0625  -0.1083   0

For    = 30o and    rB/A = 0.125 

1c.  Determine the angular acceleration a of the body:
 is the rate of change (w)OXYZ of the vector w w.r.t. a fixed frame of reference
OXYZ, (w)oxyz is the rate of change of w w.r.t. a rotating frame of reference oxyz, 
is the angular velocity of the rotating frame.

.
.

y

z

x


 

oO X

Y

Z

x

y

z

1

 B

A

Cap.5
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PROBLEM 15-259 - solution

Frame OXYZ is fixed.
Frame oxyz is attached to the vertical rod and rotates 
with constant angular velocity w1.

y

z

1

 B

A2

x
X

Y

Z O

o

.
Consequently:   w1 = 0  and    = w1

 =  = 1 + 2 = 0 + 2
. . . .

 = ( 2 )OXYZ = ( 2)oxyz +  x 2

 = 0 +                 

 = 15 i rad/s2

i j k
0   5   0
0   0   3

. .
1d.  Compute the acceleration of a point of a 
body:

aB =  x rB/A +  x ( x rB/A)
Where aB is the acceleration of point B, aA is 
the (known) acceleration of point A,  and 
are the angular acceleration and angular 
velocity of the body with respect to a fixed 
frame of reference, and rB/A is the position
vector of B relative to A.

Cap.5
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PROBLEM 15-259 – solution

x
z

1

 B

A

2

The acceleration of end B:

aB =  x rB/A +  x ( x rB/A)

aB =  x rB/A +  x vB

vB =  x rB/A = 0.325 i + 0.188 j - 0.313 k [m/s]

rB/A = 0.0625 i - 0.1083 j

 = 15 i [rad/s2]

 = 5 j + 3 k [rad/s]

i j k
15           0      0

0.0625  -0.108   0
aB =                                +

aB = -2.13 i + 0.97 j - 3.25 k  [m/s2]

i j    k
0           5          3

0.325   0.188   -0.313

Recall:

Cap.5
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SLIDING BAR EXERCISE
The bar sliding down the wall is represented in the figure, using translation rigid
joints at the extremities. For a given initial data, calculate the velocity and
acceleration of the extreme points.

Cap.5
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SLIDING BAR EXERCISE - solution

Cap.5
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SLIDING BAR EXERCISE - solution

Cap.5
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SLIDING BAR EXERCISE – solution

Cap.5
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SLIDER CRANK MECHANISM
The slider crank mechanism is represented in the figure, using rotational pin
joints at the left extremities and translation joint in the right point. For a given
initial data, calculate the relative velocity and acceleration of the crank body and
the instantaneous centre of rotation.

Cap.5
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SLIDER CRANK MECHANISM - solution

Cap.5
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SLIDER CRANK MECHANISM – solution
Relative velocityAbsolute analysis

Instantaneous centre of rotationRelative acceleration

Cap.5



REVISIONS ABOUT ROTATION

• Rotation About a Fixed Point “O“:
– 1+2 is different from 2+1.
– finite rotations cannot be treated as 

vectors, since they do not satisfy simple 
vector operations such as the 
parallelogram vector addition law.

– infinitesimal rotations indeed behave as 
vectors. 

– angular velocities can be added 
vectorially, ex: W=w1+w2.

150Cap.5
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PLANE MOTION OF RIGID BODIES:
FORCES AND ACCELERATIONS

The relations existing between the
forces acting on a rigid body, the
shape and mass of the body, and the
motion produced are studied as the
kinetics of rigid bodies.
In general, our analysis is restricted
to the plane motion of rigid slabs
and rigid bodies symmetrical with
respect to the reference plane.

G

F1

F2

F3

F4

HG

ma

G

.

The two equations for the motion of a system of particles apply to the most general
case of the motion of a rigid body. The first equation defines the motion of the mass
centre G of the body.

F = ma
where m is the mass of the body, and a the acceleration of G. The second is related to 
the motion of the body relative to a centroidal frame of reference. 

MG = HG

.

Cap.6
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GENERAL EQUATIONS FOR PLANE MOTION

Where HG is the rate of change of the angular momentum HG of the body about 
its mass centre G.

.

F = ma

MG = HG

.

These equations express that the system of the external forces is equipollent to the 
system consisting of the vector ma attached at G and the couple of moment HG.

.

For the plane motion of rigid slabs and rigid bodies
symmetrical with respect to the reference plane, the angular
momentum of the body is expressed as:

HG =  I
where I is the moment of inertia of the body about a
centroidal axis perpendicular to the reference plane and
w is the angular velocity of the body. Differentiating
both members of this equation

HG =  I=  I
. .

B

B’

Z

O

x

z

y

Cap.6
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


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
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GENERAL EQUATIONS FOR PLANE MOTION
For the restricted case considered here, the rate of change for the angular
momentum of the rigid body can be represented by a vector of the same direction
as  (i.e. perpendicular to the plane of reference) and of magnitude I.

The external forces acting on a rigid body are actually equivalent to
the effective forces of the various particles forming the body. This
statement is known as d’Alembert’s principle. D'Alembert showed
that one can transform an accelerating rigid body into an equivalent
static system by adding the so-called "inertial force" and "inertial
torque" or moment. The system can then be analyzed exactly as a
static system subjected to this "inertial force and moment" and the
external forces.
Cap.6

Jean le Rond d'Alembert
(November 16, 1717 – October
29, 1783) was a French
mathematician, physicist a
mechanician, and philosopher.
He was also co-editor with
Denis Diderot of the
Encyclopedia.

G

F1

F2
F3

F4

G

I

ma

x x y yF ma F ma  GM I

0 0x x y yF ma F ma    0GM I 
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ALEMBERT’S PRINCIPLE

G

F1

F2

F3

F4

ma
G

I

Alembert’s principle can be expressed in the form of a vector diagram, where
the effective forces are represented by a vector maG attached at G and a couple
IG.
•In the case of a slab in translation, the effective forces reduce to a single
vector maG ;
•while in the particular case of a slab in centroidal rotation, they reduce to the
single couple IG ;
•in any other case of plane motion, both the vector maG and IG should be
included.

This method can be used to solve problems involving the plane motion of several
connected rigid bodies. Some problems, such as noncentroidal rotation of rods and
plates, the rolling motion of spheres and wheels, and the plane motion of various
types of linkages, which move under constraints, must be supplemented by
kinematic analysis.

  
F maG  0

0


  inertiaFF
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THEMATIC EXERCISE
A homogenous bar with 71.2 [N] of
weight is pinned connected to two
distinct frictionless translation
joints, located in a vertical plane.
Calculate the force F necessary to
promote a normal reaction of 35.6
[N] (vertical) in to point B and the
corresponding bar acceleration.

 F ma
F ma

R RG
Gx

C B  
 

  







712 0

0 0
,

















01905,06,35109,033,0
00
00

0

FR

HM

C

GG



RB

B

A

C
F

30º

Rc

X
Y

Solution: F=41,3 (N), aGX=5,68 (m/s2)

B

A

C
F

30º
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ANGULAR  MOMENTUM 








M
PO

M
PG

dmVPOH

dmVPGH





By definition: 

Relation between: (1º Koenig theorem)

   
   

  
GG

bodyGG

M
bodyG

M
bodyG

bodyG
M

O

HMVGO

WIMVGO

dmPGWVPGdmPGWVGO

dmPGWVPGGOH





















0

O
G

P

Samuel Koenig, German
physicist , (1712-1757)

Cap.6
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KINETIC MOMENTUM  - SPECIAL CASES

1- Body in translation

2- Fix point rotation about point O

 
H

G
 0 Because W=0  !!!

  
H OG MVO G 

3- Three-dimensional general movement

  WI

dmPOWPOH

O

M
O



  )(


 
  WI

dmPGWVPGH

G

M
GG



 


GGO VMGOHH




O
G

P

(1º Koenig theorem)
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DYNAMIC MOMENTUM

 

 

  


 



    

  

H
d
dt

OP V dm

d OP
dt

V dm OP
dV
dt

dm

V V V dm OP a dm

V MV K

O P
M

P
M

P

M

P O P
M

P
M

O G O

 

   

    

   



 

 

Time differentiating the angular momentum, normally calculated into a non fixed 
point, we obtain:

O OK H
 

Being “O” a fixed point

G GK H
 

Being “O” coincident to point “G”

Other cases: Use of general expression

P



O

X

Y

Z

X’

Y’

Z’
rO

PO

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CONCLUSION

  


H I WG G1-

2-

ALWAYS !!!!

          
K H I W I W I WG G G G G       

Special case: general plane motion with symmetric body to plane OGY 

XG YG

ZG


















w
W 0

0


 





















GG

GGGG

GGGG

ZZ

YYYX

YXXX

G

I
IP
PI

I
00

0
0


















WI

H

GGZZ

G 0
0






















































WIWWI

K

GGGG ZZZZ

G 0
0

0
0

0
0




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EXERCISE: RIGID BODY IN ROT. TRANSLATION
For the rigid plane body, moving in
rotational translation, with mass M,
connected with two straight massless
bars to the same number of fix pin
joints.
Knowing that the rigid plane body is
moving in to a vertical plane,
determine the connecting forces
between the bars and the body, for
the angle 45º.

S=
60

0 
[m

m
]

L=1000 [m
m]

X
Y

=45º

GaMF 


GGG HKM 


Dynamic Solution:
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GaMF 


S=
60

0 
[m

m
]

L=1000 [m
m]

X
Y

=45º
RA

RB

C

OB

A

Solution: Rigid body in translation
Cinematic solution: Determine the
mass center acceleration.

Determine the dynamic momentum (time derivative of the angular momentum)

 GBWWGBWaa BG




 
































































































































0

0
00

0
0
0

0
00

0
0

2

L
L

LL

BCBCaa CB
















   0


 WIH GG

000
 GH
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GaMF 


S=
60

0 
[m

m
]

L=1000 [m
m]

X
Y

=45º
RA

RB

C

OB

A

Solution: Rigid body in translation

   
 







LMMg
LMMgRBRA








sin
cos 2

Dynamic Solution system:

    0sin
2

sin
2

  sRBsRA

GaMF 


GGG HKM 


 
L

g  sin






By direct substitution:

        




 d

L
gd

L
g

d
d

L
g

dt
d

d
d

L
g sinsinsinsin










 




By direct integration:

    cos
2

sin
2

L
gd

L
gd  




By direct substitution:  cos
2
3 MgRBRA 
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EP 16.163 – DYNAMIC R. – Thematic exercise 13

The motion of a square plate of side 150 mm and mass
2.5 kg is guided by pins at corners A and B that slide in
slots cut in a vertical wall. Immediately after the plate
is released from rest in the position shown, determine:
(a) the angular acceleration of the plate;
(b) the reaction at corner A.A 30o

B

Cap.6



164

EP 16.163 – DYNAMIC REACTIONS

A 30o

B

1. Kinematics: Express the acceleration of the
center of mass of the body, and the angular
acceleration.

2. Kinetics: Draw a free body diagram showing the
applied forces and the inertial components.

3. Write three equations of motion: Three
equations of motion can be obtained by
expressing the x components, y components, and
moments about an arbitrary point.

1. Kinematics:

A
30o

B

aA
aB

G

x
y

 

















































































































































0
075.0
3

0

0
150.021

23

0
)30cos(
)30sin(

0
0
150.0

0
0

0
21

23

0
)30cos(
)30sin(







A

A

B

A

A

B

B

A

A

B

B

AB

a
a
a

a
a

a
a

a
a

a
a

BAwwBAwaa


 For this instant, .0


w
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EP 16.163 – DYNAMIC REACTIONS

 






























































































0
0375.0

0101.0

0
075.021

075.023

0
075.0
075.0

0
0

0
)30sin(
)30cos(









A

A

A

A

AG

a
a

a
a

GAwwGAwaa




1. Kinematics: (cont.)

2. Kinetics: Angular and dynamic momentum

  

































wI
I

I
wIH

zz

yy

xx

GG 0
0

00
00
00























wI
H

zz

G 0
0



=> 

















































































































zzzzzzzzzz

G

IwIwwIwIwI
H 0

0
0
0

0
0

0
0

0
0

0
0









   22222 .009375.0
12
1

12
1

12
1 mkgbammbmaIII yyxxzz 

A
30o

B

aA
aB

G

b a
x

y
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MOMENTS OF INERTIA FOR COMMON SOLIDS 
AROUND SOME OF THEIR PRINCIPAL AXES 

SOLID/AXIS MOMENT OF INERTIA

cylinder about symmetry axis

cylinder about central diameter

ellipsoid about principal axis

elliptical slab about major axis

elliptical slab about vertical

rectangular parallelepiped about major axis

ring about perpendicular axis

ring about diameter

rod about end

rod about center

sphere about diameter

spherical shell

torus about diameter

torus about symmetry axis

Cap.6
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EP 16.163 – DYNAMIC REACTIONS

F = ma

MG = HG

.

A 30o

BG

W = 2.5g

RB

RA

 

















009375.021075.023075.023075.021075.0
0375.0)30cos(5.2)30sin()30cos(
0101.0)30sin(5.2)30sin()30cos(

AABB

BA

AB

RRRR
mgRR

mgRR

























































0
2393.21
2625.12

009375.001745.002745.0
09375.05.0866.0
02525.0866.05.0


B

A

R
R



































2.51
52.3

21


B

A

R
R
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COMPUTATIONAL SOLUTION
Interactive physics: Angular momentum, velocity, acceleration, contact force.

Cap.6
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PROBLEM 16.153
The axis of a 5-in.-radius disk is fitted into a slot
that forms an angle  = 30o with the vertical. The
disk is at rest when it is placed in contact with a
conveyor belt moving at constant speed. Knowing
that the coefficient of kinetic friction between the
disk and the belt is 0.2 and neglecting bearing
friction, determine the angular acceleration of the
disk while slipping occurs.



5 in

1.  Kinematics: Express the acceleration of the center of mass of the body, and the 
angular acceleration.

2.  Kinetics: Draw a free body diagram showing the applied forces and an equivalent 
force diagram showing the vector ma or its components and the couple  Ia.


Once in contact with the belt the disk rotates about a fixed
point (its center). The acceleration of the mass center is zero,
and the angular acceleration is .

Cap.6
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PROBLEM 16.153 - SOLUTION

x

y
30o

N1

N2

0.2 N2

mg

G G
I 

x

y

=

Kinetics; draw a free body diagram.

Fx = m ax:      0.2 N2 - N1 cos 30o = 0      

Fy = m ay :      N2 + N1 sin 30o - mg = 0

MG = I:      0.2 N2 (     ) =      m (      )2 

N2 = 0.896 mg

 = 27.7  rad/s2

5
12

5
12

1
2

Write three equations of motion.
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PROBLEM 16.158

The uniform rod AB of weight W is released from
rest when  = 70o. Assuming that the friction force is
zero between end A and the surface, determine
immediately after release (a) the angular acceleration
of the rod, (b) the acceleration of the mass center of
the rod, (c) the reaction at A.

L

B

A


1. Kinematics: Express the acceleration of the center of mass of the body, and
the angular acceleration.

(aG/A)t =  rG/A =  L
2aG = aA + aG/A

aG = -aA i +  sin70o i -  cos70o j

aG = (-aA +  sin70o ) i -  cos70o j

L
2

L
2
L
2

L
2

B

A



G
(aG/A)t

 = 0Cap.6
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PROBLEM 16.158 - SOLUTION
B

A

B

A

B

A
aA aA

aA



G
G

G
(aG/A)t

 = 0

= +


aGy

aGx

2.  Kinetics: Draw a free body diagram showing the applied forces and an effective 
force diagram showing the vector ma or its components and the couple  I.

B

A

W = mg

RA

G =

B

A

maGx

maGy

I 

G


2

12
1 mLI 















 

º70
2

º70
2

CosLmma

SinLamma

Gy

AGx




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PROBLEM 16.158 - SOLUTION
3. Write three equations of motion: Three equations of motion can be obtained
by equating the x components, y components, and moments about an arbitrary
point.

(a) The angular acceleration of the rod: Moments about point P

mg (     cos 70o ) =  m  cos 70o (    cos 70o ) +       mL2 L
2

L
2

L
2

1
12

 =  6 g cos 70o

L [ 1 + 3 (cos 70o )2 ]  = 1.519 ( g/L)
(b) The acceleration of the mass center:

L
2aG = (-aA +  sin70o ) i -  cos70o jL

2

aG = 0 i - 0.260 g j

Fx = m ax:     0 = m (-aA +  sin70o )

aA =  sin70o = 1.519         sin 70o = 0.760 g

L
2

L
2

L
2

g
L

Substitute for aA and  :
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PROBLEM 16.158 - SOLUTION

maGx = m (-aA +  sin70o )
maGy = - m  cos70o

L
2

L
2

 = 1.519 (g/L)

(c) The reaction at A:

Fy = m ay :    RA - mg = - m  cos70o

RA = mg - m  cos70o

L
2

L
2

RA = 0.740 mg RA = 0.740 mgSubstitute for :

B

A

W = mg

RA

B

A

maGx

maGy

I 
=GP P

cos70oL
2

G
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Problem 16.11

The support structure shown in the figure is
used to move up cylindrical objects from one
level to another. Knowing that the static friction
coefficient is equal to 0.25 between the support
and the object, determine:
a)The acceleration “a” that tends object to slip.
b)The smaller ratio between h/d that tends
object to rotate down, before slipping.
Cap.6



176

Problem 16.30

A disk with 203 [mm] radius is part of a
breaking system which is connected to a
flying wheel (not represented). The inertial
moment of both components is 18.98 [kgm2].
The movement is controlled by means of a
brace, being the kinetic friction coefficient
equal to 0.35. Knowing that initial angular
velocity equals 360 [rpm] anticlockwise,
when a 333.6 [N] force is applied under the
pedal, determine the number of revolutions
necessary to stop the disc.
Cap.6



177

Problem 16.129

A uniform bar AB with 3[kg] mass
is connected to the winch BD and to
the mass less cursor, which may slip
over EF. Knowing that for the
represented position BD rotates with
15 (rad/s) of angular velocity and
with 60 [rad/s2] of angular
acceleration, both clockwise,
determine the reaction at A.

Cap.6
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Problem 16.129

Cap.6



Test exercise - revisions

• Right figure represents a complex
mechanism, built with two straight bars AB
and BC, each with 2 and 3 [kg] mass. Bar
AB is connect to a disc in vertical position.
Disc is rotating clockwise at constant rate,
with angular velocity of 6 [rad/s]. For the
represented position, determine the dynamic
reactions affecting bar AB.

• Formulae:
– Tabulated data:

– Parallel axis theorem:

179

21
12GY XgI I mL 

2.dmII G 
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KINETICS OF RIGID BODIES IN THREE 
DIMENSIONS

F = ma MG = HG

.

The two fundamental equations for the motion of a system of particles 

X

Y

Z O

x

y

z
G



HG

provide the foundation for three dimensional
analysis, just as they do in the case of plane
motion of rigid bodies. The computation of
the angular momentum HG and its derivative
kG , however, are now considerably more
involved.

Cap.6
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KINETICS OF RIGID BODIES IN THREE 
DIMENSIONS (CONT.)

The rectangular components of the angular momentum HG of a rigid body may be 
expressed in terms of the components of its angular velocity w and of its centroidal 
moments and products of inertia:

Hx = +Ix x - Ixyy - Ixzz

Hy = -Iyxx + Iy y - Iyzz

Hz = -Izxx - Izyy + Iz z

If principal axes of inertia Gx’y’z’ are used, 
these relations reduce to

Hx’ = Ix’ x’

Hy’ = Iy’ y’

Hz’ = Iz’ z’

X

Y

Z O

x’

y’

z’
G



HG

Cap.6
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KINETICS OF RIGID BODIES

In general, the angular momentum HG and the angular velocity w do not have 
the same direction. They will, however, have the same direction if w is directed 
along one of the principal axes of inertia of the body.

X

Y

Z O

G

HG
mv

r X

Y

Z O

x

y

z
G



HG

The system of the momenta of the particles forming a rigid body may be reduced to 
the vector mv attached at G and the couple HG. Once these are determined, the 
angular momentum HO of the body about any given point O may be obtained by 
writing

HO = r x mv + HGCap.6
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In the particular case of a rigid body constrained to rotate about a fixed point O,
the components of the angular momentum HO of the body about O may be
obtained directly from the components of its angular velocity and from its
moments and products of inertia with respect to axes through O.

Hx = +Ix x - Ixyy - Ixzz
Hy = -Iyxx + Iy y - Iyzz
Hz = -Izxx - Izyy + Iz z

x

y

z
O



HO

FIXED POINT ROTATION

HO = r x mv + HG
HO = [Io].w

since: rwvG



2MdII Go 
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The principle of impulse and momentum for a rigid body in three- dimensional 
motion is expressed by the same fundamental formula used for a rigid body in plane 
motion.

Syst Momenta1 + Syst Ext Imp1 2 = Syst Momenta2

X

Y

Z O

G

HG
mv

r

Hx = +Ix x - Ixyy - Ixzz

Hy = -Iyxx + Iy y - Iyzz

Hz = -Izxx - Izyy + Iz z

Hx’ = Ix’ x’         Hy’ = Iy’ y’ Hz’ = Iz’ z’

The initial and final system momenta should be represented as shown in the figure 
and computed from

Or, in the case of  principal axes of inertia:

PRINCIPLE OF IMPULSE AND MOMENTUM

Cap.6
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The kinetic energy of a rigid body in three-dimensional motion may be divided into 
two parts, one associated with the motion of its mass center G, and the other with 
its motion about G. Using principal axes x’, y’, z’, we write

T =     mv 2 +    (Ix’x’ + Iy’y’ + Iz’z’ )
2                2                21

2
1
2

where v = velocity of the mass center
w = angular velocity
m = mass of rigid body

Ix’, Iy’, Iz’ = principal centroidal moments of inertia.

KINETIC ENERGY OF A RIGID BODY

In the case of a rigid body constrained to rotate about a fixed point O, the  Kinetic 
energy may be expressed as

T =      (Ix’x’ + Iy’y’ + Iz’z’ )
2                2                21

2
The equations for kinetic energy make it possible to extend to the three-
dimensional motion of a rigid body the application of the principle of work 
and energy and of the principle of conservation of energy.
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X

Y

Z
O

X’

Y’

Z’
G


HG x

y

z

F = ma MG = HG

.

change of HG with respect to that frame. As the body rotates, its moments and
products of inertia with respect to GX’Y’Z’ change continually. It is therefore more
convenient to use a frame Gxyz rotating with the body to resolve w into components
and to compute the moments and products of inertia which are used to determine HG.

The fundamental equations can be applied to
the motion of a rigid body in three
dimensions. We first recall that HG represents
the angular momentum of the body relative to
a centroidal frame GX’Y’Z’ of fixed
orientation and that HG represents the rate of

.

DYNAMIC ANALYSIS

HG = (HG )Gxyz +  x HG
. .

HG represents the rate of change of HG with respect to the frame GX’Y’Z’ of fixed 
orientation, and   equals the angular velocity of the rotating frame Gxyz.

.
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If the rotating frame is attached to the body, its angular velocity  is identical to the 
angular velocity  of the body.

Setting   , using principal axes, and writing this equation in scalar form, we 
obtain Euler’s equations of motion.

EULER’S EQUATIONS OF MOTON

F = ma MG = HG

.

HG = (HG )Gxyz +  x HG
. .

Substituting HG above into  MG ,

MG = (HG )Gxyz +  x HG

.

.
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MO = (HO )Oxyz +  x HO
.X

Y

Z

HO x

y

z

O

In the case of a rigid body constrained to rotate
about a fixed point O, an alternative method of
solution may be used, involving moments of the
forces and the rate of change of the angular
momentum about point O.

Where: MO = sum of the moments about O of the forces applied 
to the rigid body

HO = angular momentum of the body with respect to the 
frame OXYZ

(HO)Oxyz = rate of change of HO with respect to the rotating 
frame Oxyz 

 = angular velocity of the rotating frame Oxyz

.

FIXED POINT ROTATION MOTION
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Thematic exercise 14

1

3

2

G

N

RFa

L

A disc of radius “r” and mass
“M” rotates without slipping in
the plane ground. The disc axis
OG rotates in a socket ball
fixed rotational joint, point O,
with a constant linear velocity
“V” at point “G”, being always
in vertical position.
Calculate the contact reactions.

)( GOWWGOWaa armarmarmOG




1.  Kinematics: Express the acceleration of the body mass center, and the angular 
acceleration.

2.  Kinetics: Draw a free body diagram showing the applied forces and an equivalent 
force diagram showing the vector ma or its components and the couple  I.

O

3. Mass properties: Recall geometric mass properties for a disc.

Cap.6
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THEMATIC PROBLEM

 F m aG  














LMR
RNMg

FaR

23
02

01



 
M HG G  















0.
01.

4
12. 2

Far
RL

MrRL  

1

3

2

G

N

RFa

L

R2

R1

R3

2.  Kinetics: Draw a free body diagram showing the applied forces and an equivalent 
force diagram showing the vector ma or its components and the couple  I.

Solution: R1=0; Fa=0; R3=-Mv2/L; R2=-1/4Mv2r/L2; N=Mg+1/2Mv2r/L2
Cap.6
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Thematic exercise 15
Un unbalance axis may be approximated by
the sketch represented in the figure. Knowing
that the mass of each bar is equal to 0.3 [kg]
and the principal rod rotates at a instant speed
of 1200 [r.p.m], when a couple M of 6 [Nm] is
applied, determine the dynamic reactions at the
supports, neglecting the inertia of the principal
rod CD.

Equations to be solved:

GamF 


CC HM 


 

z 

x 

y 

XG 

YG 

G 

d 

Angular momentum HC:

2

12
1 mLI

Gy 

2.dmII G 
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Mass centre:
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TEST EXERCISE – cont.
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

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Angular momentum HC:

Time derivative of HC:
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TEST EXERCISE – cont.
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After mass centre determination, acceleration calculation and establishing force 
equilibrium:
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Kinematics of mass centre:
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When the motion of gyroscopes and other axisymmetrical
bodies are considered, the Eulerian angles , , and 
are introduced to define the position of a gyroscope. The
time derivatives of these angles represent, respectively,
the rates of precession, nutation, and spin of the
gyroscope. The angular velocity  is expressed in terms
of these derivatives as

 = - sin i + j + ( +  cos )k


D
B

B’
D’

A

A’

C

C’

Y

Z

O






GYROSCOPE’S MOTION

The unit vectors are associated with the frame Oxyz 
attached to the inner gimbal of the gyroscope (figure 
to the right) and rotate, therefore, with the angular 
velocity

B

B’

A

A’

C

C’

Z

O



x

y

z
K
.

k.

j
.

 = - sin i +  j +  cos  k

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Denoting by I the
moment of inertia of the
gyroscope with respect to
its spin axis z and by I’ its
moment of inertia with
respect to a transverse axis
through O, we write:

HO = -I’ sin i + I’ j + I( +  cos )k


 = - sin i +  j +  cos k


MO = (HO )Oxyz +  x HO
.

Substituting for HO and into

leads to the differential equations defining the motion of the gyroscope.

D
B

B’
D’

A

A’

C

C’

Y

Z

O




 B

B’

A

A’

C

C’

Z

O



x

y

z
K
.

k.

j
.

GYROSCOPE’S MOTION
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B

B’

Z

O



x

y

z

K
. k.

MO

In the particular case of the steady precession of a 
gyroscope, the angle , the rate of precession , 
and the rate of spin  remain constant. Such 
motion is possible only if the moments of the 
external forces about O satisfy the relation

.
.

MO = (Iz - I’ cos ) sin  j
.            .

i.e., if the external forces reduce to a couple
of moment equal to the right-hand member
of the equation above and applied about an
axis perpendicular to the precession axis
and to the spin axis.

GYROSCOPE’S MOTION
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A homogeneous disk of mass m = 5 kg
rotates at a constant rate 1 = 8 rad/s
with respect to the bent axle ABC, which
itself rotates at the constant rate 2 = 3
rad/s about the y axis.

Determine the angular momentum HC of
the disk about its center C.

2
A

B

1
300 mm

400 mm

r = 250 mm

x

y

z

C

PROBLEM  18.147

1.  Determine the angular velocity w of the body: w is the angular velocity of the 
body with respect to a fixed frame of reference. The vector w may be resolved into 
components along the rotating axes. The angular velocity is often obtained by adding 
two components of angular velocities w1 and w2.

 = 1 + 2 ; 1 = 8 k rad/s; 2 = 3 j rad/s
 = 3 j+ 8k rad/s

Cap.6
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PROBLEM  18.147 - SOLUTION
2

A

B

1
300 mm

400 mm

r = 250 mm

x

y

z

C

2. Determine the angular momentum of
the body: If the principal axes of inertia
x’, y’, z’ of the body at G (mass center)
are known, the components of the angular
momentum HG are given by:

( HG )x’ = Ix’ x’
( HG )y’ = Iy’ y’
( HG )z’ = Iz’ z’

where Ix’, Iy’, and Iz’, are the principal
moments of inertia, and x’, y’, and z’,
are the components of the angular
velocity of the body.Angular momentum about C :

( HC )x’ = Ix’ x’ ( HC )y’ = Iy’ y’ ( HC )z’ = Iz’ z’ 

Ix’ = Iy’ =     m r2 ,    Iz’ =     m r21
4

1
2Cap.6



199HC = 0.234 j + 1.25 k kg m2 /s

 = 3 j+ 8k rad/s

Ix’ = Iy’ =     m r21
4

1
2Iz’ =     m r2

( HC )x’ = Ix’ x’ = 0

( HC )y’ = Iy’ y’ =     5 (0.25)2 3  = 0.234  kg m2 / s

( HC )z’ = Iz’ z’ =     5 (0.25)2 8  = 1.25  kg m2 / s

1 
4
1 
2

PROBLEM  18.147 - SOLUTION
2

A

B

1
300 mm

400 mm

r = 250 mm

x

y

z

C
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Two L-shaped arms, each weighing 5 lb, are 
welded to the one-third points of the 24-in. 
shaft AB. Knowing that shaft AB rotates at 
the constant rate w = 180 rpm, determine:

(a)the angular momentum HA of the body 
about A;

(b) the angle that HÁ forms with the shaft.

9 in

9 in

9 in

9 in

A

B



PROBLEM  18.148

1.  Determine the angular velocity w of the body : w is the angular velocity of 
the body with respect to a fixed frame of reference.  The vector w may be 
resolved into components along the rotating axes.

 = 18.85 k rad/s

 = 180 rpm = 18.85 rad/s

Cap.6
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2.  Determine the mass moments and products 
of inertia of the body: For a three dimensional 
body these are the quantities Ix, Iy, Iz, Ixy, Ixz, and 
Iyz, where xyz is the rotating frame.  If the 
rotating
frame is centered at G (mass center) and is in the
direction of the principal axes of inertia
(Gx’y’z’), then the products of inertia are zero
and Ix, Iy, and Iz, are the principal centroidal
moments of inertia.

9 in

9 in

9 in

9 in

A

B



x

y

z

PROBLEM  18.148 – SOLUTION

Defining:

L =      ft.    d =      ft   m =           slug8
12

9
12

2.5
32.2

Iz = 2 [Iz of       + Iz of      ]

Iz = 2 {     m L2 + m [ L2 + (0.5 L) 2 ] +      m L2 + m (0.5 L) 2 }

Iz = 0.1456  lb . ft . s2

1 2
1
12

1
12
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PROBLEM  18.148 – SOLUTION

Ixz = [Ixz of       + Ixz of       + Ixz of       + Ixz of       ]

Ixz = [ m (-L)(-2d) + m (-0.5L)(-2d) + m ( 0.5 L)(-d) + m ( L )(-d) ]

Ixz = 1.5 m L d = 0.0582  lb . ft . s2

1 2 43

Iyz = [Iyz of       + Iyz of       ]

Iyz = [m(0.5L)(-2d) + m(0.5 L)(-d)] = -1.5 m L d = - 0.0582 lb . ft . s2

1 4

3.  Determine the angular momentum of the body: The angular momentum HA of a 
rigid body about point A can be expressed in terms of the components of its angular 
velocity w and its moments and products of inertia.

( HA )x = + Ix x - Ixy y - Ixz z

( HA )y = - Iyx x + Iy y - Iyz z

( HA )z = - Izx x - Izy y + Iz z
Cap.6
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( HA )x =  - Ixz z = - ( 0.0582 )( 18.85 ) = - 1.098  lb . ft . s

( HA )y = - Iyz z = - ( - 0.0582 )( 18.85 ) = 1.098   lb . ft . s

( HA )z = + Iz z = + ( 0.1456 )( 18.85 ) =  2.744   lb . ft . s

z = 18.85  rad/s

Iz = 0.1456  lb . ft . s2

Ixz = 0.0582  lb . ft . s2

Iyz = - 0.0582  lb . ft . s2

(a) Angular momentum about A:

HA = - 1.098 i + 1.098 j + 2.74 k lb . ft . s

9 in

9 in
B

1

2

9 in

9 inA


x

y

z

3 4

PROBLEM  18.148 – SOLUTION
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9 in

9 in
B

1

2
9 in

9 inA


x

y

z

3 4

(b) = The angle HA forms with the shaft:

HA = - 1.098 i + 1.098 j + 2.744 k lb . ft . s

HA
. k = HA cos 

2.744 = 3.153 cos 

HA =       (-1.098)2 + (1.098) 2 + (2.74) 2 = 3.153  lb . ft . s

 = 29.5o

PROBLEM  18.148 – SOLUTION
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The sheet-metal component shown is of
uniform thickness and has a mass of 600 g. It
is attached to a light axle supported by bearings
at A and B located 150 mm apart. The
component is at rest when it is subjected to a
couple M0 = ( 49.5 mN.m ) k. Determine the
dynamic reactions at A and B:
(a) immediately after the couple is applied;
(b) 0.6 [s] later.

1. Determine the mass moments and products of inertia of the body: For a three
dimensional body these are the quantities Ix, Iy, Iz, Ixy, Ixz, and Iyz, where xyz is the
rotating frame. If the rotating frame is centered at G (mass center) and is in the
direction of the principal axes of inertia (Gx’y’z’), then the products of inertia are
zero and Ix, Iy, and Iz, are the principal centroidal moments of inertia.

75 mm

x

y

z

M0

75 mm

75 mm

75 mm

75 mm

G

A

B

PROBLEM  18.153- Thematic exercise 16

Cap.6
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PROBLEM  18.153 – solution
Moments and products of inertia :

By symmetry :
Iz , Ixz , Ixz of       = Iz , Ixz , Ixz of1 3

Set :   b = 0.075 m,   m = 0.6 kg

Iz = 2 [ Iz of       ] + Iz of     1 2

Iz = 2 {[          b2 ] +      [ b2 + (    )2 ]} +      (     m )( 2b )21
18

m
6

b
3

m
6

1
12

2
3

Iz =      m b211
18

75 mm

x

y

z

M0

75 mm

75 mm

75 mm

75 mm

G

A

B

Cap.6

h

b h/3

b/3

ZG

YG

Z

Y

2

18
1 MhI

GG zz 

2

6
1 MhI zz 

X

Recall:
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PROBLEM  18.153 – solution

Ixz = 2 [ Ixz of       ]1

Ixz of       = 02
For the whole body :

75 mm

x

y

z

M0

75 mm

75 mm

75 mm

75 mm

G

A

B

Ixz = 2 [ 0 +      (-b)( - )] m
6

b
6

Ixz =       m b21
18

Iyz = 2 [ Iyz of       ]1

Iyz = 2 {[ - b2 ] +      [(- )(    ) ]}1
36

m
6

b
3

m
6

b
6

1
36Iyz = - m b2

Iyz of       = 02 For the whole body :

Cap.6
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2. Determine the angular velocity w of
the body and the angular velocity  of
the rotating frame:  is the angular
velocity of the body with respect to a
fixed frame of reference. The vector 
may be resolved into components along
the rotating axes.  is the angular
velocity of the rotating frame. If the
rotating frame is rigidly attached to the
body,  =  .

PROBLEM  18.153 - solution

75 mm

x

y

z

M0

75 mm

75 mm

75 mm

75 mm

G

A

B

x = y = 0,     z = 
 =  k
 = 

Cap.6
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3. Determine the angular momentum of
the body:
The angular momentum HG of a rigid body
about point G can be expressed in terms of
the components of its angular velocity w
and its moments and products of inertia.

PROBLEM  18.153 - solution

75 mm

x

y

z

M0

75 mm

75 mm

75 mm

75 mm

G

A

B

( HG )x = - Ixz z = - m b2

( HG )y = - Iyz z =       m b2

( HG )z =  Iz z =       m b2

1
18

1
36

11
18 HG =      m b2 ( - 2 i + j + 22 k)1

36

Angular momentum about G :

Ixz =       m b21
18

1
36

Iyz = - m b2Iz =      m b211
18

Recall:
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PROBLEM  18.153 - solution
4. Compute  the rate of change of angular momentum : The rate of change of HG
with respect to a fixed frame is given by

HG = ( HG )Oxyz +  x HG

where ( HG )Oxyz is the rate of change of HG with respect to the rotating frame, and
 is the angular velocity of the rotating frame. If the rotating frame is rigidly
attached to the body,  is equal to , the angular velocity of the body.

. .

.

Immediately after the couple is applied  = 0  

HG = ( HG )oxyz +  x HG
. .

HG =      m b2  ( - 2 i + j + 22 k)1
36

.
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6.  Write equations of motion: Six independent scalar equations can be written 
from 

 F = m a,          MG = HG

.

5. Draw the free-body-diagram equation: The diagram shows that the system of
the external forces exerted on the body is equivalent to the vector ma applied at G
and the couple vector HG.

.

PROBLEM  18.153 - solution

x

y

z
M0

G

A

B
Bx

By

Ax

Ay =
x

y

z

G

A

B
HGy
.

HGx
.

HGz
.

ma = 0

Cap.6

mg
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Equating moments about B :  MB = HB
.

HG =      m b2  ( - 2 i + j + 22 k)1
36M0 = 0.0495 k N.m

m = 0.6 kg, b = 0.075 m,  = 24 rad/s2

PROBLEM  18.153 - solution

x

y

z
M0

G

A

B
Bx

By

Ax

Ay =
x

y

z

G

A

B
HGy
.

HGx
.

HGz
.

ma = 0

Cap.6
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

Recall: 1st Koenig Theorem
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HG =      m b2  ( - 2 i + j + 22 k)1
36

.
M0 = 0.0495 k N.m

Equating forces :  F = ma

(a) Dynamic reactions at A and B :

A = 0.015 i + 0.03 j N B = - 0.015 i - 0.03 j  N

PROBLEM  18.153 - solution

x

y

z
M0

G

A

B
Bx

By

Ax

Ay =
x

y

z

G

A

B
HGy
.

HGx
.

HGz
.

ma = 0
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(b) 0.6 s after the couple is applied :

 = 24 rad/s2 (constant)
 = 24 t = 24(0.6) = 14.4  rad/s
 =  k = 14.4 k rad/s

Compute  the rate of change of angular 
momentum.

HG =      m b2 ( - 2 i + j + 22 k)1
36

HG = ( HG )oxyz +  x HG
. .

1
36

HG =      m b2 [(- 2 - 2 ) i + ( - 2 2) j + 22 k]1
36

.

HG =      m b2  ( - 2 i + j + 22 k) 
+ ( k ) x (       m b2 ( - 2 i + j + 22 k)

1
36

.

PROBLEM  18.153 - solution

75 mm

x

y

z

M0

75 mm

75 mm

75 mm

75 mm

G

A

B
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Write equations of motion. Moments about B :

 MB = HB
.

=
x

y

z

G

A

B
HGy
.

HGx
.

HGz
.

ma = 0

1
36x Component ( +      ) : -Ay(0.15) =      m b2(-2- 2), Ay = 0.1596 N

y Component ( +     ) :  Ax(0.15) =      m b2(- 2 2),   Ax = -0.244 N1
36

M0 = 0.0495 k N.m HG =      m b2[(-2-2)i+(-22)j+22 k]1
36

.

m = 0.6 kg,   b = 0.075 m,
 = 24 rad/s2,   = 14.4 rad/s

x

y

z
M0

G

A

B Bx

By

Ax

Ay

PROBLEM  18.153 - solution

Cap.6
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 F = ma

Dynamic reactions at A and B after 0.6 s :

x Component ( +      ) :   Ax + Bx = 0    Bx = 0.244  N 
y Component ( +      ) :   Ay + By = 0    By = -0.1596  N 

A = -0.244 i + 0.1596 j N B = 0.244 i - 0.1596 j  N

Ax = -0.244 N,   Ay = 0.1596 N

Write equations of motion. Equating forces :

=
x

y

z

G

A

B
HGy
.

HGx
.

HGz
.

ma = 0

x

y

z
M0

G

A

B Bx

By

Ax

Ay

PROBLEM  18.153 - solution

Cap.6
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600 mm
A

30o


.


.

B

A 2-kg disk of 150-mm diameter is attached
to the end of a rod AB of negligible mass
which is supported by a ball-and-socket joint
at A. If the disk is observed to process about
the vertical in the sense indicated at a
constant rate of 36 rpm, determine the rate
of spin  of the disk about AB.

.

PROBLEM  18.157

1. Determine the angular velocity w of the body and the angular velocity W of the
rotating frame:  is the angular velocity of the body with respect to a fixed frame
of reference. The vector  may be resolved into components along the rotating axes.
The angular velocity is often obtained by adding two components of angular
velocities 1 and 2.  is the angular velocity of the rotating frame. If the rotating
frame is rigidly attached to the body,  =  .

Cap.6
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PROBLEM  18.157 - solution
Determine the angular velocity w of the body.

Determine the angular velocity W of the rotating 
frame.

 =  - sin i +  cos k
..

 = - 36 rpm = - 3.770  rad/s
.

 = -  sin i + (  +  cos ) k
. . .A

B

Z
z

x
. y



L

 K
.

 k
.

2. Determine the mass moments and products of inertia of the body: For a three
dimensional body these are the quantities Ix, Iy, Iz, Ixy, Ixz, and Iyz, where xyz is the
rotating frame. If the rotating frame is centered at G (mass center) and is in the
direction of the principal axes of inertia (Gx’y’z’), then the products of inertia are
zero and Ix, Iy, and Iz, are the principal centroidal moments of inertia.

Cap.6
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600 mm
A

30o


.


.

B

Determine the mass moments of inertia.

 = 30o

L = 600 mm

Ix =     m r2 + m L2

Ix =      2 ( 0.075 )2 + 2 ( 0.6 )2 = 0.7228  kg. m2

1
4
1
4

Iz =     m r2 =     2 ( 0.075 )2 = 0.005625  kg. m21
2

1
2

PROBLEM  18.157 – solution

3. Determine the angular momentum of the body: The angular momentum HG of
a rigid body about point A can be expressed in terms of the components of its
angular velocity w and its moments and products of inertia.

( HA )x = + Ix x - Ixy y - Ixz z

( HA )y = - Iyx x + Iy y - Iyz z

( HA )z = - Izx x - Izy y + Iz z
Cap.6
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PROBLEM  18.157 – solution
3. Determine the angular momentum of the body.

Angular momentum about A :

4. Compute  the rate of change of angular momentum.

HA = ( HA )oxyz +  x HA

. .
( HA )oxyz = 0,   since  = constant

. .

HA =   x HA =
i j k

- sin 0          cos
- Ix  sin 0    Iz ( +  cos ) 

. . .
. . .

HA = sin [ Iz ( +  cos ) - Ix  cos ] j
. .. .

 =  - sin i +  cos k
..

HA = Ix x i + Iz z k
HA = - Ix  sin i + Iz (  +  cos ) k.. .

 = -  sin i + (  +  cos ) k
...

A

B

Z
z

x
y



L

 K
.

 k
.

Cap.6
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5.  Draw the free-body-diagram: The diagram shows the system of the external 
forces exerted on the body.

6.  Write equation of motion: For a body rotating about point A :

 MA = HA
.

A

B

z

x

. y



Az

Ax

W = mg

Ay

Z

L
A

B

Z
z

x
y



L

 k
.

 K
.

PROBLEM  18.157 – solution

Note:
The y axis and Ay are in
a direction perpendicular
(out) to the plane of the
figure.

Cap.6
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Write equation of motion.

A

B

z

x
. y



Az

Ax

W = mg

Ay

Z

L
.
HA = sin [ Iz ( +  cos ) - Ix  cos ] j

... .

 MA = HA :
.

- mg L sin j = sin [ Iz ( +  cos ) - Ix  cos ] j. . ..

.
(- L k ) x ( -mg K ) = sin [ Iz ( +  cos ) - Ix  cos ] j

. ..

 =             cos -
Ix - Iz

Iz

m g L
Iz 

...

Sum of moments about A :

Recall:

PROBLEM  18.157 – solution

Cap.6
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 =             cos -
Ix - Iz

Iz

m g L
Iz 

...

Ix = 0.7228  kg. m2

Iz = 0.005625  kg. m2
 = 30o

L = 600 mm

m = 2 kg

 =                                  (- 3.77 ) cos 30o -0.7228 - 0.005625
0.005625

(2)(9.81)(0.6)
0.005625 (- 3.77)

.

 = - 3.77  rad/s
.

 = 138.9  rad/s
.

A

B

Z
z

x
. y



L

 k
.

 K
. PROBLEM  18.157 – solution
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TEST EXERCISE – Thematic exercise 17

The extreme point of a uniform bar AB, with a
mass of 8 [kg] is connected to a slide vertical
frictionless and massless cursor.
The other extreme point is connected to a vertical
cable BC.
If the bar is released from rest, for the position
shown, determine:
a) The angular acceleration of the bar;
b)The dynamic instant reaction.
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Problem:

Solution: By Newton’s second law

Angular momentum determination:
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TEST EXERCISE – solution
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Time derivative of momentum determination (Dynamic momentum):

Cinematic analysis: Mass center acceleration
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
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TEST EXERCISE – solution
Cinematic analysis: Mass center acceleration

 
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
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
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




















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Second equation leads to: 

2
3

2
30 LaLa AyAy   

Substitution in to previous equation : 
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TEST EXERCISE – solution



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
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EXERCISE 16.119
• The 300 [mm] uniform rod BD of

mass 3 [kg] is connected, as shown,
to crank AB and to a collar D of
negligible mass, which can slide
freely along a horizontal rod.
Knowing that crank AB rotates
counter clockwise at the constant
rate of 300[rpm], determine the
dynamic reaction at support D, when
=0º.

228

A

B

D



18
0 

[m
m

]

Cap.6



EXERCISE 16.119 – NUMERICAL SOLUTION
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ENERGY METHODS
The principle of work and energy for a rigid body is expressed in the form

T1 + U1     2 = T2

where T1 and T2 represent the initial and final values of the kinetic energy of the rigid 
body and U1      2 the work of the external forces acting on the rigid body.

The work of a force F applied at a point A is:

U1     2  =       (F cos ) ds 
s1

s2

where F is the magnitude of the force,  the angle it forms with the direction of
motion of A, and s the variable of integration measuring the distance travelled by A
along its path.

dw F dr F Cos ds  
  . .

F

YX

Z

A
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WORK OF A COUPLE

U1      2  =       M d
1

2

The work of a couple of moment M applied to a rigid body during a rotation in 
of the rigid body is:

The kinetic energy of a rigid body in plane motion is calculated according to the 
3rd Koenig theorem:

T =     mv 2 +    I21
2

1
2

where v is the velocity of the mass centre G of the body, w
the angular velocity of the body, and I its moment of inertia
about an axis through G perpendicular to the plane of
reference.

G

 v

Cap.7
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KINETIC ENERGY

T =     mv 2 +    I21
2

1
2

The kinetic energy of a rigid body in plane motion may be
separated into two parts: (1) the kinetic energy mv 2

associated with the motion of the mass center G of the body,
and (2) the kinetic energy Iw2 associated with the rotation
of the body about G.

1
2

1
2

For a rigid body rotating about a fixed axis through O with
an angular velocity w,

T =     IO21
2

where IO is the moment of inertia of the body about the
considered fixed axis.

G

 v



O
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KINETIC ENERGY – PLANE MOTION

M

P X

Y    
v v w GPP G  

Velocity of a generic point of the body

 

 

E Mv w GP dm

Mv I w

c G
M

G G

  

 

1
2

1
2

1
2

1
2

2
2

2 2

 

Kinetic energy of the body

 E I wc O 1
2

2

Special case: Body movement about a fixed point:
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PRINCIPLE OF ENERGY CONSERVATION 

When a rigid body, or a system of rigid bodies, moves under the action of
conservative forces, the principle of work and energy may be expressed in the
form

which is referred to as the principle of conservation of energy. This principle
may be used to solve problems involving conservative forces such as the force of
gravity or the force exerted by a spring.

T1 + V1 = T2 + V2

dw dU 

The Work of a conservative force is numerically equal to minus the potential
variation associated to the force. The work is independent of the way of the force
application point.

Examples:
ipipp mghEEEW   with ,  21

2
1

2
21

2
1 2

1 with  ,  ieiee KxEEEW 

2
21

2
1 2

1 with  ,  ieiii xmEEEW 

Gravitational force

Elastic force

Inertia force

T1 + U1     2 = T2 
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THEMATIC EXERCISE - 18
The gear chain A has a mass of 10 (kg), a
gyration radius of 200 [mm] and a primitive
radius of 250 [mm].
The gear B has a mass of 3 [kg], a gyration radius
of 80 [mm] and a primitive radius of 100 [mm].
The system is at rest when a couple M equal to 6
[Nm] is applied to gear B. Neglecting the friction,
determine:
a) The number of revolutions till it’s velocity has
achieved 600 [r.p.m.];
b) The average tangential force that B exerts on
gear A.

A

B

a) Applying the principle of work and energy to the gear chain (A+B):

T U T U T TA B
1 1

2
2 1

2
2 20     ( )

    

    
2

2
2

22
2

22222
2

60
260008,03

2
1

60
2600

2
1)(

2
1

)(2,010
2
1)(

2
1)(

2
1







 







 





BBBB
G

B

AAAAAA
G

A

KmwIT

wwKmwIT

P1 P2

B

A

VP

RB-primitive radius

Cap.7
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Moment of inertia of a 
ring about 
perpendicular axis 
(I=MR2).
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THEMATIC EXERCISE

 v v w w w wI
A

I
B A B A B      0 25 01 0 4, , ,

A kinematics approach:

U M1
2 6   

The impulse energy:

)(356,4)(37,27 srevolutionrad So:

 22
2

12
2

11 1,254,0
2
125,0)(0  FTUTUT A

The principle of work and energy applied to the gear A:

)(95,10 radrrSS BABA  

The hypothesis of no slipping:

Solution: F=46(N)

A

B

F
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EXERCISE 17.10




e

c




0 4
0 3
,
,

A rotating body is breaking by means
of a geometric defined arm, as
represented in the figure.
The rotating element has a radius of
254 [mm], and a inertial moment of
18,3 [kgm2]. Knowing that the initial
angular velocity is equal to 180 [rpm],
anticlockwise, determine the force that
must be applied by the hydraulic jack
to stop the system after 50 revolutions.
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VIBRATIONS

Vibrations are consequence of particular processes, where
dynamic forces excite the structures or elements.

In machines, cars and buildings, those effects may lead to a
decreasing in efficiency, bad function, lose of control and severe
irreversible problems.
Vibrations and noise are related. The noise is part of vibrational
energy transformed on to air pressure variation.

The major problems in vibration occur by resonance
phenomenon. This problem may occur when the dynamic forces
excite the natural frequencies or modes of vibration in the
neighbourhood of the structural element.

Modes and natural frequencies are characteristics from the
geometric body.

Cap.8
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VIBRATIONS – (UN) HELPFUL CASES 

Cap.8
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PROBLEM DETECTION IN VIBRATIONS
During tests, the results
observation in time domain does
not give so much useful
information, however, if that
information is treated in the
frequency domain, may help to
identify the energy concentration
for some specific frequencies.

From kinematics analysis, the
mechanical engineer may identify
the mechanical element with its
different natural frequencies,
identifying the problem source.

Cap.8



241

MATHEMATICAL MODEL

Mathematical models may be useful to simulate the behaviour of the
element, when submitted to exterior actions and modifications to
dynamic characteristics, promoted by geometric changes.

Cap.8



242

EXPERIMENTAL MODEL (Univ. Southern California)

Actuators
Sensors

Motes

• Building Details
– 48 inches high, 4 floors, 60 lbs
– Floors –1/2 x 12 x 18 aluminum 

plates
– steel 1/2 x 1/8 inch steel columns
– 5.5 lb/inch spring braces
– 4 actuators on the top floor
– 8 motes, 2/floor
– dual axis, 200Hz, 2 starGates

• 4 Test Cases
– Case 1: braces from floor 4 removed 
– Case 2: braces from floor 3 removed
– Case 3: braces from floor 2 removed
– Case 4: braces from floor 2 and 4 

removed

Cap.8



EXPERIMENTAL MODEL (Univ. Southern California)
• Stiffness reduction due to the removal of bracing systems to the frame structure.

243

Case 1 Case 2

Case 3 Case 4
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CASE STUDY
Problem: The portal frame presented in
the picture, presents a vibration problem,
when moving the load. The maintenance
could stop and verify the source of the
problem, or let go on till collapse. This
dilemma and also the uncertain
questions, if the force level generated by
the gear motor was very high or if those
level forces were amplified by resonance
of the gear motor structure, let the
engineer think about the problem and try
to do a diagnostic.

Analysis: An experimental measurement
(accelerometer) produces a spectrum like
in the picture.

Solution: A piece of the gear train was
collapsed and produce instability on the
rotation procedure.
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PERIODIC PHENOMENON

T

X = Amplitude

t = time

Characteristics:
T = period
f = frequency = 1/T (Hz)
w = angular frequency = 2f
= phase

Answer in time domain: x = X sin( wt +  )

Answer in frequency domain: 
F(t) = X0 + X1 sin(w1t + 1 ) + X2 sin(w2t + 2 ) +...+Xn sin(wnt + n )

1/T1 1/T2 1/Tn Frequency (Hz)

Amplitude X

Any periodic function may be
approximated by a summation
of harmonic functions.
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SIGNALS AND HARMONICS
• The motion of a mechanical

system can consist of a single
component at a single frequency
or it can consist of several
components occurring at different
frequencies simultaneously, as for
example with the piston motion of
an internal combustion engine.

Cap.8
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SIMPLEST FORM OF VIBRATION SYSTEM
• Once a (theoretical) system of a mass and a spring is set in motion it

will continue this motion with constant frequency and amplitude. The
system is said to oscillate with a sinusoidal waveform.

Cap.8
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MECHANICAL DISCRETE  SYSTEMS 

X1

X2

F spring F spring

X1 X2

F damping F damping

F mass

X2-X1

F spring

X2-X1

F damp

X2

F mass
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MECHANICAL VIBRATIONS
Consider the free vibration of a particle, i.e.,
the motion of a particle P subjected to a
restoring force proportional to the displacement
of the particle - such as the force exerted by a
spring.
If the displacement x of the particle P is
measured from its equilibrium position O, the
resultant F of the forces acting on P (including
its weight) has a magnitude kx and is directed
toward O.
Applying Newton’s second law (F = ma) with
a = x, the differential equation of motion is:

Recall statics and dynamics:

O≝ ௘௦௧ߜ

+xm

-xm

PEquilibrium

+

..

x

Cap.8

Ԧ=mܨ∑ Ԧܽ

mg-k(ߜ௘௦௧+x)=mݔሷ

∑ 	Ԧ=0ܨ

mg-kߜ௘௦௧=0
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MECHANICAL VIBRATIONS

O

+xm

-xm

PEquilibrium

+

mx + kx = 0
setting  n

2 = k/m

x + n
2x = 0

..

..

The motion defined by this expression is called 
simple harmonic motion.

x = xm sin (nt + )

The solution of this equation, which represents the 
displacement of the particle P  is expressed as:

Where:   xm = amplitude of the vibration
wn =  k/m = natural circular frequency

 =  phase angle

x
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MECHANICAL VIBRATIONS

x + n
2x = 0

..

x = xm sin (nt + )
The period of the vibration (i.e., the time
required for a full cycle) and its frequency (i.e.,
the number of cycles per second) are expressed
as:

Period = Tn = 2
n

Frequency = fn =       =
n
2

1
n

The velocity and acceleration of the particle are
obtained by differentiating x, and their
maximum values are:

vm = xmn am = xmn
2

O

+xm

-xm

PEquilibrium

+

x

Recalling:
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OSCILLATORY MOTION

O

P

The oscillatory motion of the particle
P may be represented by the
projection on the x axis of the motion
of a point Q describing an auxiliary
circle of radius xm with the constant
angular velocity n.
The instantaneous values of the
velocity and acceleration of P may
then be obtained by projecting on the
x axis the vectors vm and am
representing, respectively, the velocity
and acceleration of Q.

xm

am= xmn
2



nt

vm= xmn

nt + 

x QO

Q

v

a

x
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SIMPLE PENDULUM
While the motion of a simple pendulum is not truly a
simple harmonic motion, the formulas given above may
be used with n

2 = g/L to calculate the period and
frequency of the small oscillations of a simple
pendulum.

The free vibrations of a rigid body may be analyzed by choosing an appropriate
variable, such as a distance x or an angle  , to define the position of the body,
drawing a diagram expressing the equivalence of the external and effective forces,
and writing an equation relating the selected variable and its second derivative. If
the equation obtained is of the form

x + n
2x = 0      or  + n

2= 0.. ..

the vibration considered is a simple harmonic motion and its period and frequency 
may be obtained.


A

CL
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FORCED VIBRATION WITH A SINGLE D.O.F.
• Single Degree of Freedom System - Heavy Duty Vehicle Suspended Seats 

(construction and agricultural vehicles, buses)

254

Seat

Sensor

Controller

Spring Controllable shock absorber

Road input

Acceptable motion transmitted

Off-state
Random
pattern

On-State 
Ordered 
pattern 
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FORCED VIBRATION

x
Equilibrium

P = Pm sin f t

f t = 0

m

m sin f t

f t

x
Equilibrium

The forced vibration of a mechanical system occurs 
when the system is subjected to a periodic force or when 
it is elastically connected to a support which has an 
alternating motion. The differential 
equation describing 
each system is
presented 
below.

mx + kx = Pm sin f  t

mx + kx = km sin f  t

..

..
Cap.8
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FORCED VIBRATION

x
Equilibrium

P = Pm sin f t

f t = 0

m

m sin f t

f t

x
Equilibrium

mx + kx = Pm sin f t

mx + kx = km sin f t

..

..

The solution of these
equations is obtained by
adding a particular
solution of the form:

to the general solution.

xpart = xm sin f t

•The general solution of the corresponding homogeneous equation represents a
transient free vibration which may generally be neglected.
•The particular solution represents the steady-state vibration of the system.
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MAGNIFICATION FACTOR

x
Equilibrium

P = Pm sin f t

f t = 0

m

m sin f t

f t

xEquilibrium

mx + kx = Pm sin f t
..

mx + kx = km sin f t
..

-Substituting xpart, ሶݔ part, ሷݔ part into each of the differential equation,
and recalling the definition of natural frequency (k/m=ݓ௡ଶ).
-Dividing the amplitude xm of the steady-state vibration by Pm/k in
the case of a periodic force, or by m in the case of an oscillating
support, the magnification factor of the vibration is defined by:

The amplitude xm of the forced vibration becomes infinite
when f = n , i.e., when the forced frequency is equal to the
natural frequency of the system. The impressed force or
impressed support movement is then said to be in resonance
with the system. Actually the amplitude of the vibration
remains finite, due to damping forces.
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RESONANCE VIBRATIONS
• Swinging a child in a playground is an easy job because

you are helped by its natural frequency.
• With a tiny push on the swing each time it comes back to

you, you can continue to build up the amplitude of swing.
• If someone try to force it to swing a twice that frequency, it

will find it very difficult.
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RESONANCE VIBRATIONS
• Old story: “Napolean army cross bridge with

organized step, being this step frequency
equal to the bridge natural frequency,
increasing the amplitude of vibration,
producing collapse.

• Real Story: Tacoma, USA, November, the 7th
of 1940. The wind movement excite bridge
natural frequencies (first the longitudinal
modes and then the torsional modes, most
critical).

• Real Story: Pingo Doce supermarket,
Bragança, Portugal, 9-11-2010. The wind
speed excite natural frequency (torsional
mode).
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FREE VIBRATIONS WITH DAMPING

Academic example: Mass, spring and shock absorber system in a horizontal plane, 
with one degree of freedom.

X

 XmXCKXXmF  
Dynamic equation:

Movement equation:

mX CX KX    0
Possible solution:

X Aest A – constant to be determined
S – Characteristic of the present system
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SOLUTION VERIFICATION

X Aest

 ( )X A s est

 ( )X A s est 2

mA s e CA s e KAest st st( ) ( )2 0  
Being a solution, the movement equation should be verified.

ms Cs K2 0  

Any solution                 different from zero, leads to:Aest  0

s
s

C
m

C
m

K
m

1

2

2

2 2








 

Second order polynomial, may produce two independent solutions:

X A es t
1 1

1
X A es t

2 2
2
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SOLUTION VERIFICATION

X t A e A es t s t( )  1 2
1 2

Any combination of those two solutions, may be considered also a solution

Notes:
1- The constants A1 and A2 may be calculated as a function of the initial conditions.
2- The characteristics S1 and S2 are function of the body geometry .

Solution Analysis: Characteristics of S1 and S2

C
m

K
m2

0
2





  

C
m

K
m2

0
2





  

C
m

K
m2

0
2





  

Real solutions, non oscillatory behaviour 

Double real solutions, non oscillatory behaviour 

Complex solutions, oscillatory behaviour 
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DAMPING TYPE

C
m

K
m

C m
K
m

C m WCritico
Critico Critico n2

2 2
2





      ( )

Damping type

three different cases of
damping, namely,
(1) heavy damping,
when c > cc,
(2) critical damping,
when c = cc,
(3) light damping, when
c < cc.

In the first two cases, the
system when disturbed
tends to return to its
equilibrium position
without oscillation. In
the third case, the
motion is vibratory with
diminishing amplitude.

CCrítico
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The equation of motion describing the damped free vibrations of a system with 
viscous damping is

mx + cx + kx = 0.. .

where c is a constant called the coeficient of viscous damping. Defining the critical 
damping coefficient cc as

cc = 2m = 2mn
k
m

where n is the natural frequency of the system in the absence of damping, we
distinguish three different cases of damping, namely:

(1)heavy damping, when c > cc,
(2)critical damping, when c = cc,
(3)light damping, when c < cc.

DAMPING

Cap.8
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FREE VIBRATIONS WITH DAMPING – EXERCISE

Mass= 1[kg]
Spring constant = 1 [N/m]
Damping coefficient = variable, from 0.02, 0.2, 2, 20

2

2,2

2,4

2,6

2,8

3

3,2

3,4

3,6

3,8

4

0 10 20 30 40 50

D
es

lo
ca

m
en

to
 X

 [m
]

Tempo [s]

C=0.02 [Ns/m] C=0.2 [Ns/m] C=2.0 [Ns/m] C= 20.0 [Ns/m]
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THEMATIC EXERCISE 19 - FUNDAMENTALS OF 
MECHANICAL VIBRATIONS

The beam shown in the left figure has a mass
of 31 [kg] and a length of 2.6 [m].
A force of 50 [N] is static applied at point “P”
and remove after. The oscillations of that point
“P” were observed in a spectral analyser, being
possible to represent the acceleration.
Use the data on graph to determine the spring
constant and the damping coefficient.

Static analysis:

A
PRCx

RCy 50

mg
F spring

 


F

M

RCx
RCy mg k

l RCy l l k

RCx

RCy mg

k
mg

k

G
est

est
est
















   

   



















 














0

0

0
50 0

4 2
50

2
0

0
2
3

50
3



 

50(N)

3
2
1

-3
-2
-1

0.05 0.10 0.15 0.20

P
L/4 L/4

3L/4=1.95
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EXERCISE - solution

Kinematic analysis: Determination of the mass centre acceleration and the 
relationship between two distinct points A and P.

 










































































































































0
4
4

0
0
4

0
0

0
0

0
0
4

0
0

0
0
0 2

l
lll

GOwwGOwaa OG























































































0
4

0

0
0

4
0
0

0
0
0

l
l

AIwVV IA
















































































0
43

0

0
0

43
0
0

0
0
0

l
l

PIwVV IP










A
P

X

VA
VP

Y



I
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EXERCISE – solution

Dynamic analysis: Newton’s second law.

 
   











































072773
942232100

94

12122250.24

450

4

2

2

2

PPP

PPestP

P

PestA

PestP

GG

G

xmkxmcx
xmkxkxcRCy

xlmRCx

mllkxkllxclRCyl

lmxkxcmgRCy

lmRCx

HM

amF




























Dynamic momentum determination: Centre of mass



















































 



22

2

121
0
0

0
0

12100
01210
000

mlml
mlH

SMG





































































 



222 121
0
0

121
0
0

0
0

121
0
0

mlmlml
H

SM
G
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EXERCISE – solution
Graphical analysis: Data retrieved from the time domain result.

][101][1.0 Hz
T

fsT 

 sradfwd /8.622  

Logarithm decrement

0644.0
3
2

)(
)(

1
2

2














 

 Ln

Ttx
txLn

The natural frequency

)/(31828
31*7

2793.62

0644.018.621 22

mNkk

m
k

ww
eq

eq
d



 

Damping coefficient

 
]/[4.5863.251

7
272/2/

mNscc

kmcmkc
c
c

eq

eqeqeqeq
cr

eq









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BEAM - SPRING EXERCISE

0.076 0.457

0.914

B
C

A straight homogeneous bar of 5.44 [kg] is
connected to a spring with elastic constant equal to
525 (N/m). If the extremity B was moved down
12,7 (mm), and then released, determine:

a) The motion equation
b) Position, velocity and acceleration of point B.
c) The period of the oscillation.
d) The maximum velocity.
e) The reaction variation at point C.

FspringRCx
RCy

mg

Static analysis:


































0457.0076.0
0

0

0

0

0

est

est

G
Z

KRCy
KmgRCy

RCx

M

Fy

Fx




Rcx=0;   RCy=45.75(N) )(014492.0 mest 
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EXERCISE - solution
Due to the beam self weight, it should be 
oscillating from the position of self static 
equilibrium. 

    
a a W CG W W CGG C     




































































































 ( )



,

 

,

, 

, 

0
0

0 076
0
0

0
0

0
0

0 076
0
0

0 076
0 076

0

2

  




Kinematic analysis:

FspringRCx

RCy
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EXERCISE – solution





H ml

ml
ml

H
ml

G

G



















































































0 0 0
0 1

12
0

0 1
12

0
0

0
0

1
12

0
0

1
12

2

2
2

2

 





 



Dynamic momentum:

 
    


























2

2

12
1457,001442,0525076,044,501442,052581,944,5076,0

076,044,5525
4134,0

mLyy

ymgRCy
RCx

BB

Best

Dynamic analysis:
 

 
F m a

M H

cm

G G








.

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EXERCISE – solution

0 41012 279 8 0,  ,  yB

0 7694 279 8 0,  .y yB B 

0 41012 149 146 0,  ,  

General differential equations:

y A Cos wt B wtB  . ( ) sin( )
One possible solution:

  C Cos wt D. wt. ( ) sin( )
or

Boundary conditions:
 
  0127,00

00



ty
ty

B

B  
   radt
t

0238,0º36,10
00







or
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EXERCISE – solution

 

y t
y t
y t

t t

t t

t t

RCx t
RCy t t

B

B

B

  
   
   

  

   

   

    

        

0 0127 19 07
0 242 19 07
4 618 19 07

0 0238 19 07

0 4538 19 07

8 655 19 07

0 4134 0 454 19 07
45 75 525 0 0127 19 07 0 413 8 655 19 07

2

, cos( . )
 . sin( . )
 . cos( . )

( ) . cos( . )
 ( ) . sin( . )
( ) . cos( . )

. . sin(( . )
. ( . cos( . )) . ( . cos( . ))







Final solution:
yB, yB, yB

. ..
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EXERCISE – solution

Velocity of point B Acceleration of point BPosition of point B

RCX RCY

Cap.8



276

DOOR EXERCISE

The door of a restaurant is equioed with a spring
and damp system, so it can return to its original
position after the push and pull procedure.
The door has a mass of 60 (kg) and a principal
inertial moment of 7.2 (kgm2 ), relative to G2.
The rotational spring has a constant of 25
(Nm/rad).

G1

G2

1

3

X

Y



I33
c 

k mg

an
at

a) Determine the critical damping coefficient.
b) A man with a occupied arm and in a hurry, uses its foot to open the door. 

Calculate the angular velocity necessary to open the door 70º.
c) How long takes the door to reach the position of 5º.?
d) Repeat the questions a),b) and c) in the case the door possess a damping 

coeficient of 1.3.
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DOOR EXERCISE – solution

    



a a W OG W W OGG S12 0

0
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
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
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
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





 ( )



. /

 

. /

 ( . )
( . )

  





H

I
I

I I
G S

G G

G G

G G G G

12

1 1

2 2

3 3 3 3

0 0
0 0
0 0

0
0

0
0















































  



   
H

I I I
G

S

G G G G G G

12

3 3 3 3 3 3

0
0

0
0

0
0

0
0































































   

Dynamic momentum:

Kinematic analysis:

G1

G2

1

3

X

Y



I33
c 

k mg

an
at
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DOOR EXERCISE – solution

     
 


H I I mO S O G12

2

2

0
0

0 0 0
0 0 455 0 0
0 0 0 455 0

0
0
















   

 

















































.
.  

 
 


H

I
I m

I m
O S

G G

G G

G G

12

1 1

2 2
2

3 3
2

0 0
0 0 455 0
0 0 0 455

0
0  

 

































.
. 



( . )  ( . ) 

( . )

H
I m I m

I m

O
S

G G G G

G G

12

3 3
2

3 3
2

3 3
2

0
0

0 455

0
0

0
0

0 455

0
0

0 455










































































  



Dynamic momentum:
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DOOR EXERCISE – solution
Dynamic analysis:

 
















































02562.19
...
...

0)455.0602.7(

...

...

455.0

...

...

2

2
33




















c

kc

mIkcHM

amF

GG
OO

G

Natural frequencies:

W
k
m

rad sn
eq

eq

  
25

19 62
113

.
. ( / )

G1

G2

1

3

X

Y



I33
c 

k mg

an
at
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DOOR EXERCISE – solution

    

 

c
c

c k m

c N s m

eq

critico
eq eq eq

eq

/

. ( . / )

2 1

44 3

Damping coefficient:

19 62 25 0.      c

Movement equation:

stAe

Possible solutions for the movement equation:

steAs)( steAs )( 2

s
s

c c1
2 39 24

1962
39 24

2












. .

Substituting the solution into the eqaution:
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DOOR EXERCISE – solution

 ( ) ( )t e A tAW tn 
1 2

For vibrations critically damping, the solution presents two real double solutions

 ( ) ( ) ( ) t W e A tA e An
W t W tn n    

1 2 2

Differentiating one more time

t
t

A A
W A A

A
A Wn n

  
  






  

  







 




0
0

00

0

1 2 0

1 2 0

1 0

2 0 0

 
 





    

Using the necessary boundary conditions

   ( ) ( (  ))t e t WW t
n

n  
0 0 0

Substituting the constants into the movement equation:
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DOOR EXERCISE – solution

 

n

tW
n

tW
nn

tW

W
t

e

WteWWe
t

td

n

nn

1
: verifybecan it  ,0function Any 

))(()(0

0)(

00000











 





Mathematically, to obtain the maximum of a function, its is necessary to 
differentiate and equal to zero the function.

  70 122º . ( )radThe maximum value for the function is:

 





( ) . ( ( 
.

))

.
.



 . ( / )

t
W

e
W

e
rad s

n

W t

n

n     

  

 

1 122 0 1 1
113

0

122 1 1
113

374

0

0

0

The intial angular velocity:
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DOOR EXERCISE – solution

Time to get 5º in rotation and in a critical damping system:

       

 





5 0 0872 0 374 0

0 0872 3741 13

º . ( ) ( . )

. ( . ).

rad e t

e t

W t

t

n

0 0872 374 0 02331 13 1 13. ( . ) .
( )

. .   
 

e t e t
g t t

t t

Being a non linear equation type, numerical methods for solution are required
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DOOR EXERCISE – solution

oldnew ttg )(

Numerical solution method

newt

error  absolute oldnew ttt

newold tt 

END

Note: Absolute error defined by user 
and equal to 0.01(s)

t old t new 
2 (lucky value) 3.94 

3.94 4.54 
4.54 4.66 
4.66 4.69 
4.69 4.69 
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DOOR EXERCISE – solution
For a over damping system, with 1.3 coefficient

    

 

c
c

c k m

c N s m

eq

critico
eq eq eq

eq

/ .

. ( . / )

2 13

57 6

        tWshAAtWchAAet dd
tWn

2121)(  
Possible solution type:

    
    

 ( ) ( ) ( ) ( )

( ) ( )

  



t W e A A ch W t A A sh W t

e W A A sh W t W A A ch W t
n

W t
d d

W t
d d d d

n

n

     

    





1 2 1 2

1 2 1 2

Differentiating one time

t
t

A A
A A W A A

A
A W

d

n

  
  






 

    







 




0
0 113 13

0

0

1 2 0

1 2 1 2 0

1 0

2 0 0

 
 





 

  . * . ( ) ( ) 



Applying boundary conditions
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DOOR EXERCISE – solution

         ( )t e A A ch W t A A sh W tW t
d d

n   
1 2 1 2

Substituting into motion equation

   ( ) ( (  ))t e t WW t
n

n  
0 0 0

    
    

)(805.051.12
   of any valueFor 

)()(

)()(0

0)(

2121

2121

sttW
e

tWchWAAtWshWAAe

tWshAAtWchAAeW
dt
dt

d

tW
dddd

tW
dd

tW
n

n

n

n























Mathematically, the maximum of a function is the result of a time function 
derivative.
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DOOR EXERCISE – solution
 

)/(5.4

2938.0
22.1

)(22.1º70805.0

0

805.0805.0
805.0

maximum

srad

eee

radt
dd

n

WW
W


















 



















tt

tWtW
t

ee

eee
dd

407.2531.0

469.1

03635.0

2938.0
5.40872.0























 


Substituting 5º or 0.0872(rad), we obtain:

newold tt ee 531.0407.203635.0  
By a numerical similarly procedure 

Table of convergence 
t old t new 

2 (lucky value) 5.86 
5.86 6.24 
6.24 6.24 

 

A stronger kick must be used in a over damping system, even the
time to open the door 70º is almost the same. The initial angular
velocity is grater [3.74 to 4.5 (rad/s)], reflecting the increasing
resistant viscous moment.
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SYSTEMS WITH TWO DEGREES OF FREEDOM 

For two degrees of freedom:

           tfxKxCxM  

- Instead of one equilibrium equation, it will take
two equations.
-The motion equations may be obtained by the
dynamic laws, by other virtual working principle
or by other methods (numerical, etc.).

Mass matrix Damping matrix Stifness matrix Load Vector
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DIFFERENTIAL SOLUTION

       0 xKxM 

-Integration of the motion equation:
1- Modal superposition method
2- Direct numerical integration

For mode shapes and natural frequencies determination, load vector is not used.

Possible solution:
     wtx cos

Time derivatives should verify also:

     wtwx sin

     wtwx cos2
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DIFFERENTIAL EQUATION

               0coscos2  wtKwtwM

           0cos2  wtKMw

Simplifying:

Homogeneous system with null solution ?

Searching for other solution rather then null, implies mathematically:

     0det 2  KMw

Frequency determination w1 and w2: Multiple solutions, mass matrix normalization.
For each frequency determination, mode shapes can also be calculated.
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VIBRATION ANALYSIS EXERCISE

1 
[m

]
1 

[m
]

M1

M2

K1

K2

Y

1

2

1

2

3

Y

• Analytical solution for determining
the natural frequencies and natural
modes of vibration.

•Numerical solution by ANSYS and
Interactive Physics 2000 (frequency and
time domain)
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SOLUTION

Findig the position from static 
equilibrium: e1, e2 

0


 F

1 
[m

]
1 

[m
]

M1

M2

K1

K2

Y

 11 ek

 22 ek

 11 ek

gm1

gm2

Load values

x2

x1

011222  ekgmek

0


 F 0111  ekgm
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SOLUTION

1 
[m

]
1 

[m
]

M1

M2

K1

K2

Y

11xm 

22 xm 

 222 xek 

 2111 xxek 

gm1

gm2

Load values

x2

x1

GamF 


Findig the motion equilibrium equation

    02111222222  xxekgmxmxek 

GamF 
   01112111  gmxmxxek 

    02112222  xxkxmxk 

  011211  xmxxk 

Applying the information from static 
equilibrium:

Introducing matrix formulation:

  










































0
0

0
0

2

1

211

11

2

1

2

1

x
x

kkk
kk

x
x

m
m





Note: the degrees of freedom are displacements, producing mass matrix with units of 
mass. If the degrees of freedom were rotations, this should produce units of inertial 
moments.

 2111 xxek 
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SOLUTION
For the homogeneous system:

The non zero solution lead to:

    
 

     0.

0det0det

2121211
2

21
4

212
2

1

111
2

2

















kkmkkkmwmmw

kkmwk
kkmw

KMw

By substitution, w2=a, a quadratic equation is obtained:

     0. 212111221
2  kkkkmkmamma

         
 21

2121
2

2111221112

2
.4

mm
kkmmkkmkmkkmkm

a




           0cos2  wtKMw
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SPECIFIC SOLUTION

 kgmm 221 Being:
   mNkmNk /16/6 21 

Solution for each real value:

   hzfhzfwwaa 5513.022508.04641.34142.100.1200.2 212121 

For the first frequency, the first mode of vibration lead to a indetermined system:

      0
12

112
1 










x
x

KMw

Choose x12=1 and take the solution for x11=3.0

Normalize both solution to mass matrix











































2236.0
6708.0

1
0.3

1
0.3

0
0

10.3

1

2

112

11

m
m














































6708.0
2236.0

1
333.0

1
333.0

0
0

1333.0

1

2

122

21

m
m



Choose x22=1 and take the solution for x21=-0.333
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Numerical solution using 
INTERACTIVE PHYSICS 2000

The student should be able to model two degrees of freedom, as presented, and 
obtain the time domain solution for each particular problem (m1, m2, k1 and k2).

The student should compare the frequency value with the analytical, ANSYS and 
interactive physics solution (for this last one, please follow the Fourier Analysis.
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FFT – Fourier Analysis 1/2

•Time domain transformation in frequency domain, using Excel data analysis capability.
•Interactive Physics can export “any number” of data points and these should be
carefully worked at excel. Excel has a limited number of data points for analysis (4096).
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FFT – Fourier Analysis – 2/2

•Excel needs to apply for “Add Ins”, new tool, called “Data Analysis”. For this new
capability, the student should work with Fourier Analysis, over a maximum of 4096 data
points.

Freq(i+1)=freq(i)+1/(total time data points) POWER=IMABS(FFT)^2
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POWER GRAPH REPRESENTATION 

•Excel give the possibility for graphing frequency versus power, for proper frequencies
determination. For the specific solution presented (k1=6, m1=2, k2=16, m2=2).
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•For the above configuration
results, the first two frequencies are
not well identified. For other
specific case like (k1=15, m1=4,
k2=15, m2=3), the results presents
much more well suitable
interpretation (see next figure).
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Numerical solution using 
ANSYS FOR MODEL ANALYSIS

The student should be able to model two degrees of freedom as presented and obtain the 
frequency domain solution for each particular problem (m1, m2, k1 and k2).

The student should use the modal analysis capability with reduce mode shape extraction.

Note: See User Manual from LPAC.
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