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(e systome SYSTEM UNITS

international d'unités
The International

System S
of Units |
Quantity To change To Metric Units Multiply English
English Units Units by

Length Inch [in] Millimeter [mm] 25,4
Foot [ft] Meter [m] 0,3948
Mile [ml] Kilometer [km] 1,6093
Area Square foot [ft?] Square meter [m?] 0,0929
Acre [a] Square meter [m?] 4046,8564929
\Volume Gallon [gal] Liter [L] or [I] 3,7854
Cubic foot [ft3] Cubic meter [m?] 0,0283
Pressure psf [1b/ft?] Pa 47,8803
psi [Ib/in?] kPa 6,8947
Weight pound [1b] kilogram [kg] 0,4536

Bureau International des Poids et Mesures
http://www.bipm.fr/enus/welcome.html



MULTIPLES AND SUB-MULTIPLES

Power base 10 Symbol Designation
Multiples 10 18 E exa
105 P peta
10 12 T tera
10° G giga
106 M mega
103 k kilo
102 h hecto
10 da deca
Submultiples 101 d deci
102 c centi
10-3 m mili
106 L micro
10-° n nano
1012 p pico
10-15 f fento
10-18 a ato

Review



MECANISMS - TRAJECTORY

Rigid bodies, assembly together to produce movement.
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KINEMATIC

— Revision —
O -
TIME t TIME t+Dt
POSITION X X+AX

The motion of a particle along a straight line is termed rectilinear motion. To
define the position P of the particle on that line, we choose a fixed origin O
and a positive direction. The distance x from O to P, with the appropriate sign,
completely defines the position of the particle on the line and is called the
position coordinate of the particle.

The velocity v of the particle is equal to the time derivative of the position
coordinate x,

V=[] v limaeso AL/ T] = G



ACCELERATION

The acceleration a is obtained by differentiating v with respect to t,

| dv _d 2
a=||mAt—>Oﬁ¥[|—/T] g¥ a:a or d= ﬁ
we can also express a as dv dvdx dV

A=t = dx dt ~ Vdx

*The velocity v and acceleration a are represented by algebraic numbers which can
be positive or negative. A positive value for v indicates that the particle moves in the
positive direction, and a negative value that it moves in the negative direction.

A positive value for a, however, may mean that the particle is truly accelerated (i.e.,
moves faster) in the positive direction, or that it is decelerated (i.e., moves more
slowly) in the negative direction. A negative value for a is subject to a similar
interpretation. O P

||IIIIr'\IIIIIIIr’\III
D TR N N B B B B B B

] x
— 7

v




GRAPHICAL SOLUTION

Sometimes it is convenient to use a graphical solution for problems involving
rectilinear motion of a particle. The graphical solution most commonly involves x -

t,v-t,anda-tcurves.

d
At any given time t,

j— v = slope of x - t curve

L g t a = slope of v - t curve
Vv
Vo |--------—5 b while over any given time interval t, to t,,
£ v,-v = [ adt Y3 1
Vq t,
t
1 b t V, - v, = area under a - t curve
X X, - X, = area under v - t curve




Thematic Exercise 1

Problem: When a point is moving through a straight line, its position is
defined by: X = 6t2 —t3

Calculate the instantaneous velocity and acceleration for all time instants.

v(t) =— =12t -3t°
a(t) = dv(t) ~12-6t
20+
o= T time

Y
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KINEMATIC EXERCISE -2 4 P

OO >
Problem: The position of a particle P when \
moving along a straight line is given by: )
X =t° —6t2 —15t + 40, tfs], x[m]t > 0 +
Calculate:

a) The time for the velocity to vanish.
b) The position and the displacement travel by the point to that instant.
c) The acceleration of that point at that instant.
d) The distance travel by the point from the position at the instant
t=4[s] till the instant of t=6]s].
v=3t? 12t 151/ |

a= 6t—12[f%2]

a) 3t°-12t-15=0<=t=-1At=5

b) x(t=5)=-60(m)

Note: the changes to sign velocity should be cheked during the time interval
X(t=0)=40(m) AX(t=0,t=5)=100(m)



d)

KINEMATIC EXERCISE -2 resolution

404

201

0

204

-404

position

-60+

a(t=5) =18 (ms™)
x(t = 4) = -52, x(t = 5) = -60, X(t = 6) = -50 => total =18(m)



TYPES OF RECTILINEAR MOTION

uniform rectilinear motion, in which the velocity v of the particle is constant.
X=X, + vt

uniformly accelerated rectilinear motion, in which the acceleration a of the particle
IS constant.

V=V, + at
1
X=X, +tVit + 75 at?

vZ=vZ+2a(x - X, )



RELATIVE MOTION

L1 11 > S I L Z’k'ﬁ‘y

1 > Y?vi‘fﬁt
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— XaT 7 Xpa
When particles A and B move along the same

straight line, the relative motion of B with
respect to A can be considered. Denoting by

v

Xga the relative position coordinate of B with
respect to A, we have

Xg = Xa * Xp/a
Differentiating twice with respect to t, we obtain:

Vg =Vpt Vg, Adg=2aptagpy

where vg,, and ag, represent, respectively, the relative velocity and the
relative acceleration of B with respect to A.




CURVILINEAR MOTION

| Vv

r /7
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The curvilinear motion of a particle
Involves particle motion along a curved
path. The position P of the particle at a given
time is defined by the position vector r
joining the origin O of the coordinate system
with the point P.

The velocity v of the particle is defined by the relation

dr

V=

dt

The velocity vector is tangent to the path of the particle, and has a magnitude v
equal to the time derivative of the length s of the arc described by the particle:

ds

V=,

dt



CURVILINEAR MOTION - cont.

y
/Y dr
dt '—v=-—-
P dt
r /7
Q~ s
PO Ne—
@,
O X
y a Note: In general, the acceleration a of the particle is
| not tangent to the path of the particle. It is defined
/I by the relation
P _ Qv
r 2 17t
Q~ s
PO Ne—"

@,
0



GENERAL MOVEMENT DISCRIPTION
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Denoting by X, y, and z the rectangular coordinates
of a particle P, the rectangular components of
velocity and acceleration of P are equal,
respectively, to the first and second derivatives with
respect to t of the corresponding coordinates:

Vy=X V=YV, =7
a, =X a=y a=1Z

The use of rectangular components is particularly
effective in the study of the motion of projectiles.



RELATIVE MOTION OF TWO PARTICLES

For two particles A and B moving in space,
we consider the relative motion of B with
respect to A, or more precisely, with respect
to a moving frame attached to A and in
translation with A. Denoting by rg, the
relative position vector of B with respect to
A, we have

./

Denoting by vg,, and ag, , respectively, the relative velocity and the relative
acceleration of B with respect to A, we also have

g ="rxt I'gp

Vg =Vp T Vg

and
dg = dp T dgp



CURVILINEAR COORDINATES

It is sometimes convenient to resolve the
velocity and acceleration of a particle P into
components other than the rectangular x, y, and z
components. For a particle P moving along a
path confined to a plane, we attach to P the unit
vectors e, tangent to the path and e, normal to
the path and directed toward the centre of
5 curvature of the path.

The velocity and acceleration are expressed in terms of tangential and
normal components. The velocity of the particleis vy = Ve,

The acceleration is determined by time derivative: V2
= —e + —
dt "t p

e

Note: - v is the speed of the particle "
- p Is the radius of curvature of its path.
- The velocity vector v is directed along the tangent to the path.
- The acceleration vector a consists of a component a, directed along the tangent to
the path and a component a, directed toward the center of curvature of the path.




POLAR COORDINATES

|| When the position of a particle moving in a plane is
,’ defined by its polar coordinates r and O, it is
convenient to use radial and transverse components
directed, respectively, along the position vector r of
the particle and in the direction obtained by rotating r
through 90° counterclockwise.

Unit vectors e, and e, are attached to P and are

directed in the radial and transverse directions. The

X velocity and acceleration of the particle in terms of
radial and transverse components is:

F=r-¢
\7:r-é’r+rder:r'-j+ de, do r'-é’r+r~§9~9 Note: It is important to
dt do dt note that a, is not equal
B dé’ de ) do to the time derivative of
a=r-e+ 0+T -6, s v,, and that a, is not

equal to the time
. 3 . derivative of v,,.
=(’r’—r6’2)-ér +(r-6’+2.r.g.).§6



RELATIVE MOTION - Thematic Exercise 2

Problem:
- The rotating 0.9 [m] arm length turns around the
point O with the constrained known expression:.
0 =15x10""t°
- The cursor B travels along the arm being its
X movement described by the following expression:
- Calculate : r=09-012t°
the expressions for the instantaneous position,
velocity and acceleration of the cursor B.
b) The velocity and accelerations from the cursor B,
after rotating the arm 30°.

Resolution in Cartesian coordinates:
rcose—résine} _ {'r'cos&—zrésine—rézcose—résine}
— > a=

N\

O —
2

Fsind+2r0cosd—ro?sin@+récosd

r:(rcosé?)l +(FS'”‘9)J V:{rsin¢9+r9C039

0.2 0.8
0.6
05 1 HYs N2 25 0.4

0.2{

Y

0.2 ‘\_\_\
-0.2

-0.4
-0.6
-0.8

-0.4




RELATIVE MOTION - resolution

Resolution in Polar coordinates:

r=Tre,
=€, + roe €, 02
=( 0.24-1, +(0.9-012.4°f03-t)g, —— | T
—(~0.24-)6, +(0.27-t-0.036-t° , T~

a= (r —rf? )ér + (Zr'é +ré )§9 o ™~
=(~0.24-(0.9-0.12-t2)0.3-1)k, +(2(~0.24-1)0.3-t)+(0.9-0.12-° | 0.3),
=(-0.24-0.27-t+0.036-t°), +(-0.180-t* +0.27, | "

Scalar velocity and acceleration results: o

0.8 1.2

1

_ 2 2 . 2 2
V=V, +Vy o a=,/a; +a, 08
0.4 0.6
[ [ 0.4
V: VI.2+V§ 0.2 a: a|’2+a; 0.2

15 2 255 “l 0.5 i a5 2z 25

0.5 1




NEWTON’S SECOND LAW (linear momentum)

Denoting by m the mass of a particle, by ¥ F the sum, or resultant, of the forces
acting on the particle, and by a the acceleration of the particle relative to a

newtonian frame of reference, we write:

> F=ma

Introducing the linear momentum of a particle, L = mv, Newton’s second law can

also be written as
MF=L

which expresses that: the resultant of the forces acting on a patrticle is equal to
the rate of change of the linear momentum of the particle.




y a, SOLVING A PROBLEM

To solve a problem involving the motion of a particle, £ F = ma
dy,  should be replaced by equations containing scalar quantities.

Using rectangular or cartesian components,

A / X _ _ _
2F=ma, 2k, =ma, XF,=ma,
y a, . .
Using tangential and normal components,
yat V2
P > F, = ma,=m3V >F,=ma,=m—
C "t P

O X

Using radial and transverse components,

> F, = ma,= m('- ro?)

> F, = ma, = m(ro + 2i0)




PROBLEM 12.123 — Thematic Exercise 3

Block A has a mass of 30 kg and block B has a mass of 15
kg. The coefficients of friction between all plane surfaces
of contact are p, = 0.15 and p, = 0.10.

Knowing that 6 = 30° and that the magnitude of the force
P applied to block A is 250 N, determine:

(a) the acceleration of block A ;

(b) the tension in the cord.

1. Kinematics: Examine the acceleration of the particles.

Assume motion with block A moving down. If block A
moves and accelerates down the slope, block B moves
up the slope with the same acceleration.

dy = dg




PROBLEM 12.123 (cont.)

2. Kinetics: Draw a free body diagram showing the applied forces and an equivalent
force diagram showing the vector ma or its components.

3. When a problem involves dry

Block A : friction: It is necessary first to

W,=294.3 N T mya =302 assume a possible motion and

then to check the validity of the

— assumption. The friction force on

250 N a moving surface iIs F = p, N.
/ N The friction force on a surface
Fo= 1 N when motion is impending is F =
ks N. A Fam=p x N
Block B\ Wg=147.15 N o 10 o
mga=15a e [/ t

/T / F, = i xN
— , P

Fo=1 N

/
- N

N’




PROBLEM 12.123 (cont.)

4. Apply Newton’s second law: The relationship between the forces acting on the
particle, its mass and acceleration is given by X F=ma. The vectors F and a can
be expressed in terms of either their rectangular components or their tangential and
normal components. Absolute acceleration (measured with respect to a newtonian
frame of reference) should be used.

Block A - SF,=0: N-(2943)c0s30°=0  N=25487 N
y then: F. = w N =0.10 (254.9) = 25.49 N
A= 294.3 NT SF. =ma: 250 + (294.3) sin 30° - 25.49 - T =30 a
309 then: 37166-T=30a (1)

Y
Block B :

Wg=147.15 N

30°
XF,=0:N"-N-(147.15) cos 30°=0:N"=382.31 N

then:  F’, = N =0.10 (382.31) = 38.23 N F, =

R, =ma:T-F -F’, -(147.15)sin 30°=15a

then: T-137.29=15a (2) ,
Pl = b



PROBLEM 12.123 - solution
Solving equations (1) and (2) gives: | T =215 [N] a=5.21[m/s?]

Verify assumption of motion.

Check: We should verify that blocks actually move by determining the value of
the force P for which motion is impending. Find P for impending motion. For

Impending motion both blocks are in equilibrium: \ —147.15 N
W,=294.3 N
- ! / '
Block A: Block B: Fm =
P /v N
Fo=us N

i el e Solving equations (3)
From Static equilibrium: and (4) gives P = 60.2 N.

2k, =0: N,: 254.87 N éFm,: ue N :,0.15 (254.87)=38.23 N | since the actual value of
ZFy — O N — 38231 N 9F m — MS N — 015 (38231):5735 N P (250 N) IS |arger than

SF,=0: P+(294.3)sin30°-38.23-T=0 3) the value for impending

Al : _ motion (60.2 N), motion
=0: T-3823-57.35-(147.15)sin30°=0  (4) akes place s ssumig




PROBLEM 12.127

A small 200-g collar C can slide on a semicircular rod
which i1s made to rotate about the vertical AB at the
C constant rate of 6 [rad/s]. Determine the minimum
required value of the coefficient of static friction
between the collar and the rod if the collar is not to
slide when:

(@) 8=90° (b) 6=75° (c) 6= 45°.
Indicate in each case the direction
of the impending motion.

r=600 mm

1. Kinematics: Determine the acceleration of the particle.

Using curvilinear coordinates:

a, = (rsind)
a, = (0.6 m) sing( 6 rad/s )?
a,=21.6sind [m/s?]

a, =0




PROBLEM 12.127 (cont.)

2. Kinetics: Draw a free body diagram showing the applied forces and an
equivalent force diagram showing the vector ma or its components.

ma, = (0.2) 21.6 siné
=4.32sing N

ie '\N_‘_.

0 F

(0.2 kg)(9.81 m/s?)

3. Apply Newton’s second law: The relationship between the forces acting on the
particle, its mass and acceleration is given by X F=ma. The vectors F and a
can be expressed in terms of either their rectangular components or their
tangential and normal components. Absolute acceleration (measured with respect
to a Newtonian frame of reference) should be used.
2F,=ma;:F -0.2 (9.81) sin 8=-4.32 sindcos & <F =0.2 (9.81) sin #-4.32 sinfcos 4
SF,=ma,; N-0.2(9.81)cos =4.32sindsin & <N =0.2 (9.81) cos &+ 4.32 sin*4

4. Friction law: F=uN
Note: For a given 6, the values of F, N, and « can be determined!!!




PROBLEM 12.127 (solution)

r=600 mm

ma, = (0.2) 21.6 sin@
=4.32sing N

el\N_‘_.

(0.2 kg)(9.81 m/s?)

Solution:

(@) 0 = 90°, F=1962N, N=432N, x=0.454 (down)
(b) 0=75°, F=0815N, N=454N, x=0.1796 (down)
(c) 0=45°, F=-0.773N, N=355N, «=0.218 (up)



PROBLEM 12.128- Thematic exercise 4

Pin B weighs 4 oz and is free to slide in a
horizontal plane along the rotating arm OC and
along the circular slot DE of radius b = 20 in.
Neglecting friction and assuming that 6 = 15 rad/s
and © = 250 rad/s? for the position 6 = 20°,
determine:

(a) the radial and transverse components of the
resultant force exerted on pin B;

(b) the forces P and Q exerted on pin B,
respectively, by rod OC and the wall of slot DE.

1. Kinematics: Examine the velocity and acceleration of the particle.

In polar coordinates: 0 = 20°
v=re +roeg ~ _ 6 = 15 rad/s
a=("-ro6%)e+(ro+2r06)e, 0 = 250 rad/s?

r=2bcos6=3.13[ft]
f=-2bsin00=-17.1[ft/s]
'=-2bsin®6-2bcos60O2=-989.79 [ft/s?]




PROBLEM 12.128 (cont.)

2. Kinetics: Draw a free body diagram showing the applied forces on pin B
and an equivalent force diagramFshowing the vector ma or its componenlﬁ1 N

0

O
3. Apply Newton’s second law: The relationship between the forces acting on the
particle, its mass and acceleration is given by X F=ma. The vectors F and a can
be expressed In terms of either their rectangular components or their radial and
transverse components. With radial and transverse components:

YF,=ma=m(r-rf?) and SF,=ma,=m(rd+2ro)
F=(4/16)/32.2* [- 989.79 - (3.13)(152)] and  F,= (4/16)/32.2* [(3.13)(250) + 2 (-17.1)(15)]
F, =-13.16 [Ib] and F, =2.10 [Ib]



PROBLEM 12.128 (Solution)

(b) The forces exerted on pin B by both bodies are obtained by
vector decomposition

F,=-Qcos & F,=-Qsingd +P
-13.16 = - Q cos 20° 2.10=-14.0sin20°+ P

Q=14.00 Ib 4007 P=6.89 Ib \X‘ 20°



NEWTON’S SECOND LAW (angular momentum)

y mv
The angular momentum H, of a particle about

0) point O is defined as the moment about O of
5 the linear momentum mv of that particle.
r

O Ho=rxmv
Z /// "

We note that H, Is a vector perpendicular to the plane containing r and mv and of
magnitude:

Ho

Ho = rmv sin ¢

Resolving the vectors r and mv into rectangular components, we express the angular
momentum Hg, in determinant form as:

| ] Kk
Hp = X Yy Z
mv, mv, my,



NEWTON’S SECOND LAW (cont.)

In the case of a particle moving in the xy plane, we have z = v, = 0. The angular
momentum is perpendicular to the xy plane and is completely defined by its magnitude

Ho = H, = m(xv, - yv,)

Computing the rate of change HO of the angular momentum H , and applying
Newton’s second law, we write

AN
Ho = Fxmv+Fxmy =xmv +Fxma(®{ ) Mo =Hyg

)

which states that : the sum of the moments about O of the forces acting on a
particle Is equal to the rate of change of the angular momentum of the particle

about O.




NEWTON’S SECOND LAW - special cases

When the only force acting on a particle P is a
force F directed toward or away from a fixed point
O, the particle is said to be moving under a central
force. Since £ Mg = 0 at any given instant, it

follows that H,, = 0 for all values of t, and O

H, = constant

We conclude that the angular momentum of a particle moving under a central
force is constant, both in magnitude and direction, and that the particle moves in
a plane perpendicular to H, .

Recalling that Hy = rmv sin ¢, for the motion of any particle under a central force,
we have, for points P, and P:

rmv sin ¢ = r,mv, sin ¢,
Using polar coordinates and recalling that v, = r6 and H, = mr20, we have

r’0 = h
where h is a constant representing the angular momentum per unit mass H,/m, of the

article.




— 400 mm *=BM 12.131 -Thematic Exercise 5
100 mm
| \ A 250-g collar can slide on a horizontal rod
‘ A B which is free to rotate about a vertical shaft.

(=0 The collar is initially held at A by a cord
attached to the shaft and compresses a spring
of constant 6 [N/m], which is undeformed
when the collar is located 500 [mm] from the

shaft. As the rod rotates at the rate 6"0 = 16 [rad/s], the cord is cut and the
collar moves out along the rod. Neglecting friction and the mass of the rod,
determine for the position B of the collar:

(a) The transverse component of the velocity of the collar;

(b) The radial and transverse components of its acceleration;

(c) The acceleration of the collar relative to the rod.




PROBLEM 12.131 (solution)

— 400 mm —
100 mm

a=(r-ré?k, +(ré+2rék,

1. Kinematics: Examine the velocity
and acceleration of the particle.
In polar coordinates:

—
[p—




PROBLEM 12.131 (cont.)

2. Angular momentum of a particle: Determine the particle velocity at B using
conservation of angular momentum. In polar coordinates, the angular momentum
H, of a particle about O is given by:

Ho=mryv,
The rate of change of the angular momentum is equal to the sum of the moments
about O of the forces acting on the particle. :
2 Mgy=Hg

If the sum of the moments is zero, the
angular momentum is conserved and
the velocities at A and B are related by:

[ M (rvga=m(rvy)g

Since
(Ve )A = rAé

v (), (Y
(Vy )g = - 0 & (vy)y ==~ (16)

& (v, )g =0.4[m/ s e




PROBLEM 12.131 (cont.)

3. Kinetics: Draw a free body diagram showing the applied forces and an
equivalent force diagram showing the vector ma or its components.

Only radial force F (exerted by the spring)
Is applied to the collar.

= ma, Forr=0.4m:
4@ — F=kx=(6N/m)0.5m-0.4m)

ma,

F=0.6 [N]
XF, = ma, <~ 06N=(0.25kg)a, < a =2.4m/s?
2F,=ma, <~ 0=(0.25kg) a, & a,=0

Kinematics. (c) The acceleration of the collar relative to the rod.

: V 0.4
V,=r <= 0=-2= —1[rad /s
¢ r 04 ! ]

a =f-rf*> = 2.4m/s’]=r—(0.4m])Arad /s*] = i = 2.8[m/s’]

Conclusion: The relative acceleration is equal to the collar radial acceleration




KINETICS OF PARTICLES: ENERGY AND
MOMENTUM METHODS

The linear momentum of a particle is defined as the product mv of the mass m of the
particle and its velocity v. From Newton’s second law, F = ma, we derive the
relation

where mv,; and mv, represent the momentum of the particle at a time t; and a time t, ,
respectively, and where the integral defines the linear impulse of the force F during
the corresponding time interval. Therefore,

mv, + Imp,_.,=mv,

which expresses the principle of impulse and momentum for a particle.



KINETICS OF PARTICLES: ENERGY AND
MOMENTUM METHODS

When the particle considered is subjected to several forces, the sum of the impulses
of these forces should be used;

mv, + 2Imp,_, ,=mv,

Since vector guantities are involved, it is necessary to consider their x and y
components separately.

The method of impulse and momentum is effective in the study of impulsive motion
of a particle, when very large forces, called impulsive forces, are applied for a very
short interval of time At, since this method involves impulses FAt of the forces,
rather than the forces themselves. Neglecting the impulse of any nonimpulsive
force, we write:

mv, + 2FAt =mv,

In the case of the impulsive motion of several particles, we write

xmv,; + ZFAt = Xmv,

where the second term involves only impulsive, external forces.



KINETICS OF PARTICLES:
ENERGY AND MOMENTUM METHODS

In the particular case when the sum of the impulses of the external forces is zero,
the equation above reduces to:

2Mv,; = 2Mv,
that is, the total momentum of the particles is conserved.

> In the case of direct central impact, two colliding bodies A and B move along

the line of impact with velocities v, and vg , respectively. Two equations can be

used to determine their velocities v’ , and v’y after the impact.

1- The first represents the conservation of the total momentum of the two bodies,
Line )

Impact .-

MpVp + MgVg = MV g + MgV

Before Impact " Vs After Impact

v : : .. :
2- The sétond equation relates the relative velocities of the two bodies before and
after impact, Vg -V a=e (V- Vg)




e Procedure;

COEFFICIENTS OF RESTITUTION

» The coefficient of restitution is the ratio of speeds of a falling object, from when it hits a
given surface to when it leaves the surface.

— This experiment was carried out in Midwood High School, on the second floor, on an concrete

surface.
— Take the ball and hold it at a set height above the surface. (height of 92 cm for all trials.)

— Drop the ball and record how high it bounces.
— Repeat for 5 trials.

— Repeat with different balls: Practice golf ball, Wilson tennis ball, rubber band ball - many rubber
bands put together in ball form, Red plastic ball, Generic unpainted billiard ball, Rubber blue ball,
Painted wood ball, Steel ball bearing, Glass marble.

— Coefficient of Restitution = speed up / speed down=SQRT (h(ave)/H).

object H(m) | h,(cm) | h,(cm) | h,(cm) | h,(cm) | hs(cm) | h,.(cm) | c.o.r.
range golf ball 92 67 66 68 68 70 67.8 0.858
tennis ball 92 47 46 45 48 47 46.6 0.712
billiard ball 92 60 55 61 59 62 59.4 0.804
hand ball 92 51 51 52 53 53 52.0 0.752
wooden ball 92 31 38 36 32 30 334 0.603
steel ball bearing 92 32 33 34 32 33 32.8 0.597
glass marble 92 37 40 43 39 40 39.8 0.658
ball of rubber bands 92 62 63 64 62 64 63.0 0.828
hollow, hard plastic ball 92 47 44 43 42 42 43.6 0.688

Meter
Stick

| L

T P

Ball

Floor




COEFFICIENT OF RESTITUTION

The constant e is known as the coefficient of restitution; its value lies between 0
and 1 and depends on the material involved. When e = 0, the impact is termed
perfectly plastic; when e = 1, the impact is termed perfectly elastic.

»In the case of obligue central impact, the velocities of the two colliding bodies
before and after impact are resolved into “n”> components along the line of impact

and “t”” components along the common tangent to the surfaces in contact.
1- In the t direction,

Line of (VA)t - (V,A)t (VB)t = (V,B)t
Impact n

2- While in the n direction:

Ma (Va)n + Mg (V) = My (V'p), + Mp(V'g),

(V’B)n - (V,A)n - € [(VA)n - (VB)n]




PROBLEM 13.195 — Thematic Exercise 6

A 25-g steel-jacket bullet is fired horizontally
with a velocity of 600 m/s and ricochets off a
steel plate along the path CD with a velocity
of 400 m/s. Knowing that the bullet leaves a
10-mm scratch on the plate and assuming that
Its average speed is 500 m/s while it is In
contact with the plate, determine the
magnitude and direction of the average
Impulsive force exerted by the bullet on the
plate.

1. Draw a momentum impulse diagram: The diagram shows the particle, its
momentum at t; and at t,, and the impulses of the forces exerted on the particle

during the time interval t, to t,.



PROBLEM 13.195 - solution 1/2

2. Apply the principle of impulse and momentum: The final momentum mv, of
the particle is obtained by adding its initial momentum mv, and the impulse of the
forces F acting on the particle during the time interval considered.

mv,; +X F At=mv,
> F is sum of the impulsive forces (the forces that are large enough to produce a
definite change in momentum).

3. Impulsive time determination: The impulsive time may be degﬁrmined from
the bullet average velocity.

Y /
yimvy X m \V { X
I ) + L = / 200
15° \ F At ’
F, At

Since the bullet leaves a 10-mm scratch and its average speed is 500 m/s, the
time of contact A t is: At=(0.010 m) /(500 m/s) = 2x10™s



PROBLEM 13.195 - solution 2/2

4. Apply the principle of impulse and momentum.

mv,; +X F At =mv,,

Y
Y
y‘\ m Vv, X \ X m \V {
cE-C- + B = /2
15 \ F AL s
Fy At
X: (0.025 kg)(600 m/s)cos15°+F,(2x10™s) = (0.025 kg)(400 m/s)cos20°
F, = - 254.6 kN
Y: -(0.025 kg)(600 m/s)sin15°+Fy(2x10'5s):(O.025 kg)(400 m/s) sin20°
F,=365.1 kN



KINETICS OF PARTICLES
NEWTON’S SECOND LAW - system of particles

Denoting by m the mass of a particle, by ~ F the sum, or resultant, of the forces
acting on the particle, and by a the acceleration of the particle relative to a
newtonian frame of reference, we can write:

> F=Xma

m; — generic mass material point;

&, — generic acceleration material point;
f; — exerted force by point j into point i;
E, — External forces resultant over point i;
r,— point i vector position.

n
Internal resultant forces exerted over point i is: Z fij  Admitted: f;=0
j=1

Newton’s second law: Fi+ Z fij =m;. &




NEWTON’S SECOND LAW - system of particles

All forces acting on the particle ticle i -
Fl + Z =y. a| a;

V.,

Moments of all forces actmg on the particle i: .

— n —
xR+ 26 x fij = F xmig;
j=1

Moments of all internal forces in the system of particles:

=l -0)

JI

so the product will vanish, because vectors are
parallel.

N N
2 (i x Fp) =2 (r x ma)




NEWTON’S SECOND LAW - system of particles

Taking into account all the system of particles:
n n

n. _, . N . —

2. 2.fij=0 2 2.Fxfj=0

i=1 j=1 i=1 j=1

Doing the summation of the previous equations for all system particles:

n. o N o ~
> Fi =2 md; 2 xR =2 F xma
-1 -1 =1 i—1

The linear momentum L and the angular momentum H, about FIXED point O
are defined as: n "
L= (mv,) Ho =2 (Fxmy;)
i=1 i-
differentiating, it can be shown that

L=>F H,=> M,
This expresses that the resultant and the moment resultant about O of the

external forces are, respectively, equal to the rates of change of the linear
momentum and of the angular momentum about O of the system of particles.




ANGULAR AND DYNAMIC MOMENT ON
MASS CENTER “G” OF ASYSTEM OF PARTICLES

I\/I'rcm :imiri
i=1
Y F=M.a
cm

where M represents the total mass: X m,

I
Being the centroidal coordinate system parallel to the Newtonian system (in

translation with respect to the newtonian frame Oxyz), It is possible to write the

value of the angular momentum of the system about its mass centre G:

n
=Y Fi [.xmy, |,
System-S' ; S IS

—

HCM

Differentiating the last equation, the dynamic moment will be calculated according to:

. n n
HCM :KCM:ZE S'Xmiai S'+Zri S'Xmivi S':Zri s
System-—$" i=1 i=1 i=1

S,><mi<':1i




EQUALTITY OF THE ANGULAR MOMENTUM
ON “MASS CENTER? for different coo. systems

The following demonstration will be used to show that the anqgular
momentum relative to the centroidal position is equal when calculated
relative to the Newtonian reference or relative to a parallel moving system.

Being & the acceleration on the moving system S’. d =d;, +4d |

Substituting the acceleration expression into the angular momentum expression:
n
- KCM - Zri s <M, (ai ‘fixo ~dcwm ‘fixo)

In——l n
Kem :Zrilsvxmiai _Zmirils
i—1 =

, . %
:Zﬁ's-{':ﬁzfu}

.
—

HCM

sistema’

,xaCM

J

1l
<

O

<




DEMONSTRATION

—_— -

HCM :HCM

Using the concept of relative velocity:

V.=V, +V "

Calculating the angular momentum in mass centre:

Hey = (Zn: miri'jxvc,\,I + [Zn: I x miVi'j—
\izl i=1

J

Equal zero!!!
n n '
%g- X M= m;xT,
i=1 i=1

Important Note: This property is valid for centroidal coordinate systems, and
In general is not valid for other coordinate systems.

— -,

“Hey =H em




SPECIAL CASES

Case 1: Inexistence of external forces:

Derivative of the linear momentum

i
|l
ol

0 Derivative of the angular momentum

AN
|

Conclusion: Linear and angular momentum conservation.

Case 2: Existence of a unigue external central force:

Conclusion: Angular momentum conservation.



PROBLEM 14.106 - Thematic Exercise 7

An 80-Mg railroad
engine A coasting at

6.5 km/h strikes a 20-Mg
flatcar C carrying a 30-Mg

load B which can slide along
the floor of the car (u, =0.25). Knowing that the flatcar was at rest with its

brakes released and that it automatically coupled with the engine upon impact,
determine the velocity of the car C:

(a) immediately after impact;
(b) after the load has slid to a stop position relative to the car.

Attention!!!

Conservation of linear momentum of a system of particles is used to determine the
final velocity of the system of particles, immediately after coupling and after the

load slides to a stop position.



PROBLEM 14.106 (solution)

(a) Velocity immediately after impact

Conservation of linear momentum of a system of particles is used to
determine the final velocity of the system of particles.

First consider the load B.
W We have F = N = 0.20N.
Since coupling occurs in At= 0 : F At =0

F=pN Mg (Vg )o + FAt=mg (Vg ),
i N
0+0=mg(Vg),
(vg )1 =0



PROBLEM 14.106 (solution)

We apply the principle of conservation of linear momentum to the entire system.

MaVo MaVy Mg(Vg);= 0
J =
o o
mcvl
Lo =Ly MyVo=(my+me) vy
_ _Ma _ 80
Vi= m+m. Vo= gg+ 20 (6.5 km/h)
v, = 5.2 km/h



PROBLEM 14.106 (solution)

(b) Velocity after load B has stopped moving in the car

The engine, car, and load have the same velocity v,. Using conservation of linear
momentum for the entire system:

Lo =L, myVp=(mMy+ me+mg) Vv,

m, L - 80
mya+me+mg © 80+ 20+ 30

V, =

(6.5 km/h)

V, =4 km/h



WORK AND ENERGY PRINCIPLE

The kinetic energy T of a system of particles is
defined as the sum of the kinetic energies of

all the particles.

n
1

Using the centroidal reference frame Gx’y’z’ we note that the Kinetic energy of
the system can also be obtained by adding the kinetic energy 1/2mv?* associated
with the motion of the mass center G and the kinetic energy of the system in its

motion relative to the frame Gx’y’z’

1
T—Emv +— Z m,V’,
1=1

, 2

The principle of work and energy can be applied to a system of particles as
well as to individual particles.
T, +U, =1,




WORK AND ENERGY PRINCIPLE

T, - kinetic energy of the system points (instant 1)
T, - kinetic energy of the system points (instant 2)
U, - Work done by external forces and internal forces **, acting on the

particles of the system

However, f; = —f;, the work of those internal forces may be different from zero,
If the 1 and j point displacements are not the same.

If all the forces acting on the particles of the system are conservative, the principle
of conservation of energy can be applied to the system of particles




PRINCIPLE OF IMPULSE AND MOMENTUM
FOR ASYSTEM OF PARTICLES

y (MAVA)1 y

t, y
> | Fdt
C/ o __ + jt1 =\\(2AVA)2 J gmBVB)
(MgVg) (McVe),
q \MeVa) o—
O @, \ y O ) tz N O @, y
WA Z_[ t, Moot

The principle of impulse and momentum for a system of particles can be
expressed graphically as shown above. The momenta of the particles at time t;
and the impulses of the external forces from t, to t, form a system of vectors
equipollent to the system of the momenta of the particles at time t, .

F)|
ﬂ Impulse definition: High amplitude force acting on
4 M~ ~asmall period of time.

At TIME




PRINCIPLE OF IMPULSE AND MOMENTUM

FOR A SYSTEM OF PARTICLES (cont.)
y (MAVA)1 y (MgVs),
o \\(g‘AVA)z

Q (MgVp), : (McVe);
oJf \ X O T X
(McVe)y

If no external forces act on the system of particles, the systems of momenta shown
above are equipollent and we expect the conservation of momenta (linear and

angular): _ _
L, =L, and (Hp);=(Ho),

Many problems involving the motion of systems of particles can be solved by
applying simultaneously the principle of impulse and momentum and the principle

of conservation of energy or by expressing that the linear momentum, angular
momentum, and energy of the system are conserved.




PRINCIPLE OF IMPULSE AND MOMENTUM
FOR ASYSTEM OF PARTICLES (cont.)

From the dynamic equilibrium equations:
Sed o Xk,
| |

Time integration Time integration

t2 ’ ‘
t2
Zjﬁdt:[z—tl S [Modt=H, -H,
t1 tl
Those quantities are the so called: linear impulse and angular impulse!!!
o DI L
/) t1 ZJ.“ m
Oo—— Fdt O
e 7{ 1 /:
‘ .

»
»

Note: If there are no external forces acting on the system partlcc?’IQSC, It is expected to
have linear and angular momentum conservation.




PROBLEM 14.105 A 30-g bullet is fired with a velocity of 480

m/s into block A, which has a mass of 5 kg.

480 m/ | X | The coefficient of kinetic friction between
mls =y | block A and cart BC is 0.5. Knowing that
| | the cart h f 4 kg and can roll
— A | | e cart has a mass 0 g and can ro
L | freely, determine:
Bl | C  (a) The final velocity of the cart and block;
U U (b) The final position of the block on the

cart.

1. Conservation of linear momentum of a system of particles is used to determine
the final velocity of the system of particles. Conservation of linear momentum
occurs when the resultant of the external forces acting on the particles of the system

mOVO ______ ﬁ

B

C B '
© © © O,

Mgy Vg = (Mg + my+ mg) vy < 0.03(480) = (0.03+5+4) v,
V¢ = 1.595 m/s —E




PROBLEM 14.105 - SOLUTION

(Mo +my) v
MoVo —

2. Conservation of linear momentum during impact is used to determine the kinetic
energy immediately afier iImpact. The kinetic energy T immediately after the collision

Is computed from T = 52 miv;2.

Conservation of linear mementum:
Mg Vo = (Mg + My) V'
0.03(480) = (0.03+5)v & v =2.86 m/s

Kinetic energy after impact=T" :

T'= —;(mo +m)(v")2= 0.5(5.03)(2.86)2 = 20.61 N-m
oo



PROBLEM 14.105 - SOLUTION
V; = 1.595 m/s mg

F=umg
S I W

3. The work-energy principle is applied to determine how far the block slides.
The final kinetic energy of the system T; is determined knowing the final velocity
of the system of particles (from step 1). The work is done by the friction force.

Final Kinetic energy=T;,  T=2061 N-m

T, =%(mo + M, + me)(v; )2 = 0.5(9.03)(1.595)2 = 11.48 N-m

The only force to do work is the friction force F.

T'+U,_ ,=T;: 20.61- 4(mg)(x) = 11.48 <> 20.61 - 0.5(5.03)(9.81)(x) = 11.48 —

— Xx=0.370m



VARIABLE SYSTEMS
S FA

M At

A m)v
For(varia%leA systems of particles, first consider a steady stream of particles, such as
a stream of water diverted by a fixed vane or the flow of air through a jet engine.
The principle of impulse and momentum is applied to a system S of particles during
a time interval At, including particles which enter the system at A during that time
Interval and those (of the same mass Am) which leave the system at B. The system
formed by the momentum (Am)v, of the particles entering S in the time At and the
impulses of the forces exerted on S during that time is equipollent to the momentum
(Am)vg of the particles leaving S in the same time At.




VARIABLE SYSTEMS - stationary systems

Equating the x components, y components, and moments about a fixed point of the
vectors involved, we could obtain as many as three equations, which could be
solved for the desired unknowns. From this result, we can derive the expression:

[+ FAt=L, & AmY, + D Fat=am.V,

In the limit, when At moves toward zero:
Mass flow rate -

Z E— m(\-yB B \7A) of the stream

an-ass

e

Applications: Flux In a turbine,
flow into a pipe, ventilator, flow in a \\

h_eliqopter.




VARIABLE SYSTEMS - non stationary systems

Consider a system of particles gaining mass by continually absorbing particles or
losing mass by continually expelling particles (as in the case of a rocket).
Applying the principle of impulse and momentum to the system during a time
Interval At, we take care to include particles gained or lost during the time
Interval. The action on a system S of the particles being absorbed by S is
equivalent to a thrust.

I

U=V,-V —

— o ——— —

| (M +Am)
' S

MV + AmV, + Zm = (M+AM(V+AV) (0 A s Ay

Zr:+ mo = mﬂ Note: u=V,-V
dt B




PROBLEM 14-115 - Thematic exercise 8

A railroad car of length L and a mass m, when

empty is moving freely on a horizontal track

while being loaded with sand from a stationary
chute at a rate dm/dt = g. Knowing that the car
was approaching the chute at a speed v, ,

determine:

(a) The mass of the car and its load after the car has cleared the chute;
(b) The speed of the car at that time.

To solve problems involving a variable system of particles, the principle of impulse
and momentum is used.

(v, =0
F;——{" e
TO® - 00 BCion

MyVy, ' (mo T CIt)V



PROBLEM 14-115 - solving

We consider the system consisting of the mass m, of the car and its contents at t =
0 and of the additional mass gt which falls into the car in the time interval t.

Conservation of linear momentum in the horizontal direction

ma,Vv
(qt)v, = |
CIon OO B TT®

Cap.4



(v, =0 PROBLEM 14-115 - solving

—

TO®
T MV (Mg +qt)v
MoVo ax MyVo
V= Tmy + gt Letting - V= gt T m, + gt
MV, dt U dt
— dx = m, + gt X = MyV, j Mo + qt
0

X =

maV MaV M, + qt
0V0 t 0V0 0T (
In(m, + qt)] = In
g [ ( 0 g )]O q mO

qx/meVv,
Using the exponential form: My + U =MmMg€

where m, + gt represents the mass at time t and after the car has moved through x.




(gt)v,=0 PROBLEM 14-115 - solution
— |

e

lCION “O®
" myV, > (my +qt)v
(a) making x = L, we obtain the final mass:

i
Ll

L/myv
m.=m,+qt,=mye" oo

(b) making t = t; in the velocity equation we obtain the final velocity:

MyVy My -qL/mgv,
o T & f




Practical exercise

Roof mounted turbines (Montana FORTIS model). y,
— Determine the forces produced by the wind on the top of the main /

tower for the wind generator. i
— The wind generator main characteristics are: Y
» Rated Power: 5800 [W]; . | P N
. : y N

o . . . I
Rotor Diameter: 5 [m]; : 7 s q
o Swept area: 19,63 [m2]; % / %
 Rated wind speed: 17 [m/s] . P N
« Cutwind speed: 2.5 [m/s] | - N
a N

Notes about roof installation:

— Turbine needs a laminar air flow to work properly, so the
existence of other buildings in the surrounding are not too good.

— The roof needs to be flat and strong enough to cope with the
weight.

— The roof needs to be stiff enough to counter vibrations that might
enter into the building.




Practical exercise

» Define control volume for air (system of particles)
— Apply the principle of impulse and momentum.

- VB=17[m/s VA=0
XF =i -V, én]
.- . _|iG

— Assume Swept area=19,63 [m2]; X

— Assume volumetric flow rate = 329,12 [m3/s]

Q =V x Aswept

— Assume mass flow rate = 425,5 [kg/s]

m:QXpair

— Forces that act on the system of particles
Fx=7234,4[N]

— Force that act on the column structure:
Fx=-7234,4[N]



THEMATIC EXERCISE 9

Each of the four rotating arms of sprinkler
consists of two straight portions of pipe
forming 120 ° angle. Each arm discharges
water at the rate of 20 [I/min] with
relative velocity of 18 [m/s]. Friction is
equivalent to a couple of M=0.375 [N.m].
Determine the angular velocity at which
sprinkler rotates.




THEMATIC EXERCISE 9 - resolution

Equating moments about axis of rotations:

ZIModt:H _H o 0+ MAt = 4 moment of (Am/ 4 )

t1 H oy Vanish, because riiv

knimematics: The velocity “v” of the water leaving the arm is the resultant of the
velocity “v”” relative to the arm and the velocity “v,” of the nozzle.

V=V+V, —'=184,[m/s]
0] (0] [(150+100Cos(60°)
V, =V, +WxOA={0¢+{ 0 x{ 100Sin(60°)
0 - W 0

w100Sin(60°)
V, ={—W[150+100Co0s(60°)]|t[mm/s]
0




THEMATIC EXERCISE 9 - solution

(0 0] (0] 9-+0.0866w]

1 0 >=HOZ—<O><:>< 0 >:6A><4@<15.6—0.2W =

MAt 0] |MaAt ) 0|

(0] (0.15+0.1Cos(60°)) (9+0.0866w) [ 0

s 0 $=< 0.1Sin(60°) >><4A7‘tn< 15.6—-0.2w { =< 0 >
MAt) | 0 ) 0 ] |Am[0.2(15.6—0.2w)-0.08669+0.0866w)||

MAt = Am[2.34 - 0.0475w]

From the hydraulic equivalence:

AM _ = 50 < mh =1.4x80[ / min], 2MI

——=4/3kqg/
At 60s [g S]

Result:

w = 42[rad / s]= 400[rpm]



SAMPLE PROBLEM -2

The water coming through two parallel distinct
plates A and B flows continuously with a
constant velocity of 30 [m/s]. The flow will be
divided into two horizontal separate zones, due
to the plane plate. Knowing volumetric flow rate
for each of the resultant fluxes, Q1=100 [I/min]
and Q2=500 [I/min], determine:

a) The theta angle;
b) The total force exerted by the flux over the
plane plate.

Conservation of mass : My =Moyr 1+ Mour 5

Impulse and Momentum impulse :
VAm




SAMPLE PROBLEM -2 — solution

Principle of impulse and momentum

Z Tf ZE & Z F = mOUTvOUT - mINvIN

(0 v, (—v, ] ( 30sin0O |
1F, 1=833x10"p; 0 ++1,66x10°p5 0 +—0.01p1—30c0%0;
0 0 0 0

Aditional data:  p"a*'=1000 (kg/m3), v,,=30(m/s), v,,=30(m/s)

Solution: Fy = 224(N), 6 =41.8°

Note: The force exerted by the stream into the plate is a force of equal amplitude
but from up to down.



TEST EXERCISE

The water coming through a duct is inject
at point A at 25 [m/s], with a volumetric
flow rate of 1.2 [m3/min]. For the same
output velocity B, determine the resultant
forces exerted by the flux over the
support.

Solution: Applying the principle of impulse and
momentum

25c0s(60°)

25

375 [mm]

Ly + Y FAt= Loy < m{25sin(60°) 1+ > FAt=m{ 0 < —|1 25sin(60°) { —

0

0

250,00
> F=:-43301

0

Applying the third Newton’s Law, the exerted resultant force over support is the oppsite vector.

— 250,00
> F =4+43301
’

=
VB _
E ™
E £
Agua p=1000 [kg/m3] 10 §.
B
[ (25c0s(60°)] (25 |
0 :Zﬁ
0 0 |



RIGID BODIES - inertial matrices

Mass Matrix_definition of a rigid body in a point, in reference to a specific
coordinate system — Mathematical operator which reports the inertial three
dimensional state of a body trough their moments and products of inertia .
Ixx B ny B sz
IW N Pyz
z |

77

» The figure represents a rotational body, being
“O” the rotational instantaneous centre point.

» Each point “P” from the yellow arm has a linear
and angular momentum equal to:

dL=dmvV  dH, =OPxdmy
By direct mass integration:
L= [vdm| |Hg= [OPxvdm
= =




INERTIAL MATRICES - simple movements

Plane rotating, with “O” belonging to the axis of rotation:

Ve
HO:,\J/.'OPx(waP)jm "
Using vector components: O P
er rw_x Y ZZD’y—yZD'Z
6Pz4y>and zﬁ:<wy$ —)> HO:I<y>x<sz—wa>dm
| Z] @, M | Z] \yZUX—XZD'y)

Introducing matrix formulation:

f .
H, = I(x +7°)dm —I(yz)dm {wy}

Conclusion: The borne matrix is symmetric — Inertial matrix




INERTIAL MATRICES — General movements

In a more general movement:
All general movement may be decomposed in a summation of a translation
movement and a rotation about the mass centre.

B B

The part of the kinetic moment relative to the second decomposed movement may
be calculated in the same way, as calculated to the plane rotating movement.



INERTIAL MATRICES - rotating referential

Rotating referential: Transformation matrix

U‘Sl — [T0—>1]- H‘SO

Ic

The transformation matrix will be composed 39
of the direct cosines from each SO axis over

S1 system.

Knowing that:

(X, | (X, (Cos(X0,X1) Cos(Y0,X1) Cos(z0,X1)
ﬁ‘so =1y, ¢ and 6‘51 =Jy, b T,., =| Cos(X0,Y1) Cos(Y0,Y1) Cos(Z0,Y1)
. ) | Cos(X0,Z1) Cos(Y0,21) Cos(Z0,21) |
. . . t
Being this matrix orthogonal, then: [To_>1] - [T—>o]
Kinetic moment will be calculated: |:|o‘81 = T0—>1]-Ho‘so

A



INERTIAL MATRIX - change of referential

Angular momentum may be calculated according to:

— :TO—>1: - __IO
— _TO—>1_-_|O‘SO_-ZU‘30

— :To—>1_-_|o‘50_-[T0—>1] .w\31

Inertial matrix may be calculated in a different coordinate system

o], = [Tm>1]-[|0]‘50-[T0—>1]t

Note: Knowing the inertial matrix in a discrete point, is possible to calculate
the moment relative to any axis passing through that point.



INERTIAL MATRIX - change of referential
Z1

Translation referential: Transformation matrix

By the Steiner theorem:

2

_(VCMSO +ZCM502) | [P ?)
o], =llo],, - M e el |+ M




INERTIA PRINCIPAL DIRECTIONS

In general, in a solid rigid body, the kinetic moment will not have the same
direction as the angular velocity vector. In the coincident cases, the directions
are known as the inertia principal direction. In those cases:

[Io]ﬁ':ﬂ@:

Gives origin to the following equation system:

([1o] - Al1).5 =0

Being a homogeneous system, the only way to have solution different from
zero IS to establish the condition of determinant equal to zero:

det{[1o] - A[1]) = 0

Conclusion: A third order polynomial equation will result, being the three
numerical solutions equal to the principal moments of inertia. For each principal
moment A we may expect an infinity of principal directions .

oo




THEMATIC EXERCISE 10 - MASS MATRIX

z

o Calculate the mass matrix (inertial TZ (A)T
tensor) of the represented rectangular 5

prism at point (O).

 Determine the mass matrix at point (A), / |
relative to system S’, by referential L0

Y

transformation. T
e Determine the inertial  principal '

directions and the corresponding / ) a -
principal moments of inertia, at point
(0). *Exercise data:

*m=12 mass unity [M]
*a=20 length unity [L]
*b=10 length unity [L]
«c=10 length unity [L]

o)



THEMATIC EXERCISE -— MASS MATRIX

» Moments of inertia, point (O) system S:

|W=I(X2+Z dm

a

y? dydz+pb”z dz dy

BRSO

3 a 3
z+pbj—dy

!
i
!

3

at C

b
b
b
pb
= pabc

:J.(x2 +2%) p(a dx dz)

= [ x* p(a dx dz)+jzzp(a dx dz)

\

<

pa jlxz dxdz+pa”z dz dx

b c
X3 3 b
— | dz +
5] 5] ,
b® |
3 Z+Paf—dx dm=pbdydz
3 3

*Exercise data:
*m=12 mass unity [M]
*a=20 length unity [L]
*b=10 length unity [L]
«c=10 length unity [L]
*m=p(abc)

!
:
i



THEMATIC EXERCISE - MASS MATRIX

 Moments of inertia, point (O) system S:

I
<e—
—
>
N
<
N
~—
Q
—
()
o
>
o
<
~—~—
x

=Ix2 (c dx dy +_[y2pcdxdy)
\

= J'_Tx dxdy+pc”y dy dx
0

SR GE

y+ch'—dx

-

0

b® a3
= pC— a+pc?b

b? a’
= pabC| — +—
)

b? a?
=m —+—=—
5+%)

= 2000 [ML?]



THEMATIC EXERCISE - - MASS MATRIX

* Products of inertia, system S:

Py J'xydm

—I xy cdxdy
—pCI dexdy
0 0
a X2 b
] o

ab2
— oo yd
pcgzyy

P, szdm

—j XZ adxdz

—paf dexdz

P, J'yzdm

= j yz) p(b dy dz)
= b ! ! y dy dz
iz
- pb_([%z 2dz
=
55

a C
—”baC(z zj

A2

=600 [ML?]

f’/

c

b

S B a e

b o ]
L




THEMATIC EXERCISE - MASS MATRIX T

e Mass matrix, point (O), system S:
1, -P, -P,]

[IO]s: -Py 1y —Py
~Pe P 1]
12000 —-600 —300
=|-600 800 -600

—300 —-600 2000

e Mass matrix, point (A), System S:
— Parallel transposition, from (O) System S, to (A) system S.

125 -50 -25 125 +50 +25 - :
[|A]|S=[|O]|S—m 50 50 -50|+m|+50 50 -50 oG )10 A6 =) 10
25 50 125 +25 -50 125 5 _5

[1.], =| 600 800 -600(+12(100 0 0O
|-300 —600 2000 50 0 0

(2000 600 300
[1.],=| 600 800 —600

300 -600 2000
: :

2000 —-600 —300] 0 100 50
+12




THEMATIC EXERCISE — MASS MATRIX  |°

« Mass matrix, point (A), System S’: TZ oty
— Rotation transposition, from point (A) System S, r A W%
i ’ , ' a
to point (A) system S’. I I X
O A | A il ;
10447 -0.894 01][2000 —600 —300| 0.447 0.894 0 »
1], =|0894 0447 0|/ -600 800 -600| -0.894 0447 0| K& /A
0 0 1{|-300 —-600 2000 0 0 1 / a >

(5600 1200 670.82
[1.],.=| 1200 22400 0O
67082 0 2000.0

cos(a) —sin(e) 0] [0.447 -0.894 0
[TS>S']:|:T i E]: sin(@) COS(OC) 0(={0.894 0447 O
0 0 1 0 0 1

o = arctg(gj =63°.4



THEMATIC EXERCISE - MASS MATRIX

* Principal moments of inertia

— Calculated by determinant condition for
Indeterminate solutions

det([lo - ﬂ“[ll]) =0

2000 —600 —300 1 0
< det||-600 800 -600(-4/0 1
| —300 -600 2000 00

=0 °

O O

2000-4 —-600 ~300 |
< det| -600 800-4 -600
—300 —-600 2000-4

e The characteristic polynomia‘l:/ A
A,
A,

o 1, = 4800
(XX yy+|yy| +Izz|xx)+P2+P2+P2:—6.39X106
~1,P2~1,P2~1,P2 2P P,P, =1.472x10°

xx yy 2z XX yz yy ' xz 2z xy Xy' yz' xz

S -L+AL+AL+A =0 <,<
Numerical Solution HP48GX:
->Solve-> polynomial-> a,x* +a,x* +a,x +a, =0

A, = 289.53
A, = 2210.47



THEMATIC EXERCISE - MASS MATRIX

* Principal directions:
— Calculated with the indeterminate homogeneous system.

([Io]_ﬂ“[h])'Za =0

2000-4  -600 — 300 W, 0
—-600 800- 4, — 600 W, = 0
—300 —-600 2000- 4, ||w, 0 PIS (Possible Indeterminate System)

» 1st principal direction:
— Specify (w;,=1), AiI=A1 and extract two equations from the system above

2000—4——600 300 Hw_ {0
~600 [800-4  —600 wiy%m
-300 | —-600 2000—A [ |w. || |0
{800 ~4,  —600 } {wiy} _ {600} - {510.47 —600 } {wiy} _ {600}
~600 2000-4, ||w, | |300 ~600 1710.47||w, | |300
w,| (235 w,, 1 W, || (0.364
{wiz}:{ 1} =) w, =235 R, 0.857
W, 1 i, 0.364




THEMATIC EXERCISE - MASS MATRIX

2nd principal direction:
— Specify (w;,=1), Ai=A2 and extract two equations from the system bellow

2000-2, —600  —300
~600 [800-4  —600
~300 | -600 2000-4 |

W, || [-0.606

W,y t =1 0.515

W,, || |-0.606

3rd principal direction:

W, 0 ‘
ﬂ _ & 1
iyl A |
Wiz !
2
c
\\

A

;

’|

— Specify (w;,=1), Ai=A3 and extract two equations from the syste\fn bellow

2000-4 _—600  —300
~600 |800-4  -600
~300 | —600 2000-4
w,, )| [0.7071
Wy, =1 0
Wy, || 0.7071

W



STUDY CASE
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A rotative transfer machine, for shoes industry, with four different working
points will be working with a special mechanism — Malta crossing system. The
rotating table will be submitted to a radial force of 8000 [N] and its own body
load should not pass through 1800 [kg]. The external dimension should not be

grater than 2000[mm]. Its productivity factor should be grater than 13 shoes
per minute.

oo



STUDY CASE - solution

System power dimensioning:

1.

The required power should be calculated
by the product of the maximum binary
required and the angular velocity.

The required maximum binary may be
calculated by the dynamic momentum (
time derivative of the kinetic momentum
or angular momentum).

The electric motor power will be
calculated by the product of the motor
out binary and the angular velocity. This
angular velocity is connected to the
productivity solution.

®=1415(rad / s)

KCM — I:.iCM ’ I:iCM — |

0
0
/4



STUDY CASE - solution

Kinematic analysis: Angular velocity and acceleration _

The maximum value of acceleration will
provide the maximum binary. This value
will be expected to 6=-11.7°, being equal
to 10,786 (rad/s?) e d T

. . . 06 04 -02 0 0.2 uA.'4 0.6
ZMCM =Ken @ Bméx: IzzW

The inertial moment may be calculated by: 10

2 2
12z~ M (¢ = §n) —87,75(kg.m?)
8

r2=0,204(m)
Knowing that: F=4643 (N)
Kew =Y M " =946,46[Nm]
34 Newton’s law: _
Bmotor — 1579,5[ Nm] —
Power =B__..0 =1579,5x1,415 = 2235|W | ~ 3
Final step: motor catalogue. | 101




KINEMATICS OF RIGID BODIES

1- Translation

2- Fix point rotation

3- General plane motion

4- Three-dimensional movement around a fix axis
5- General motion

Initial position Final position

1- Translation

-_\
o ey

Reference position
A +Tg/a = Tp
Differentiating in relation to time:
\7A + D = \75

Differentiating one more time:

HA =HB

trajectory



FIXPOINT ROTATION

2- Fix point rotation

Vector velocity is always tangent to the trajectory. In
Intrinsic coordinates we can write:

_ds

V=—
dt

Linear velocity results from the external product
definition

V=WXT
Angular velocity parallel to the fixed axis rotation
W = 0k

Angular acceleration W s parallel to the
fixed axis rotation:

A=WxT+Wx (WxT)
Note: Movement may be effectively discovery by

one of two possibilities:
1- 0=6(t)

2- 9=0(0,0)

Y A :‘

Final positio

Final position
trajectory

103



FIXPOINT ROTATION

2- Fix point rotation : Equations

Uniform rotation

0 = 0, + &t
Uniform accelerated rotation

0 = 90 + ot

0=0+6t+6t2]2

Relative velocity

Vg/a = WK xTg/a

Conclusion:

1- General expression, valid for two points belonging to the same rigid body.
V, =V, +Vix AB

2- Angular velocity is independent from the reference point.




RIGID BODZY — Kinematics: position and velocity

_ds _
- O

ro sin ¢

In rigid body translation, all points of the body have
the same velocity and the same acceleration at any
given instant.

Considering the rotation of a rigid body about a
fixed axis, the position of the body is defined by the
angle 0 that the line BP, drawn from the axis of
rotation to a point P of the body, forms with a fixed
plane. The magnitude of the velocity of P Is:

where 0 is the time derivative of 0.

dr

The velocity of P is expressed as = — =—XTr

- dt

where the vector ¢y = K = Ok
o Is directed along the fixed axis of rotation and represents the angular velocity

of the body.

Cap.5
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RIGID BODY - kinematics: acceleration

V_d_r_ Xr
“dt ~ @

» = ok = 0K

Denoting by a the time derivative dw/dt of the
angular velocity, we express the acceleration of P as:

a=aXr+oXx(wxr)

differentiating ® and recalling that k is constant in magnitude and direction, we

find that:

a = ok = ok = 6k

The vector o represents the angular acceleration of the body and is directed along

the fixed axis of rotation.

106



PLANE ROTATION

Consider the motion of a representative slab located
in a plane perpendicular to the axis of rotation of the
body. The angular velocity is perpendicular to the
slab, so the velocity of point P of the slab is:

V=okXr

where v is contained in the plane of the slab. The
acceleration of point P can be resolved into
tangential and normal components, respectively
equal to:

V=oKXTr

a,=akXxr a,= ro

— 2 — 2
a.=-m?r a = ro

107



ANGULAR VELOCITY AND ACCELERATION

The angular velocity and angular acceleration of the slab can be expressed as

do
Q) =——=
dt
2
g=92_ 99 _;
dt  dt?
or
0= 3¢
7 do

Two particular cases of rotation are frequently encountered: uniform rotation and
uniformly accelerated rotation. Problems involving either of these motions can be
solved by using equations similar to those for uniform rectilinear motion and
uniformly accelerated rectilinear motion of a particle, where x, v, and a are replaced
by 0, o, and a.




GENERAL PLANE MOTION

3- General plane motion

Va

Plane motion = Translation with A+  Rotation about A

The most general plane motion of a rigid slab can be considered as the sum of a
translation and a rotation. The slab shown can be assumed to translate with point A,
while simultaneously rotating about A. It follows that the velocity of any point B of
the slab can be expressed as:

Vg = Vpa T Vpp

where v, Is the velocity of A and vg, Is the relative velocity of B with respect to A.



GENERAL PLANE MOTION - velocity

Denoting by rg,, the position of B relative to A, we note that

Vgia = OK X I'gjp Vgia = (Mg JO = ro

The fundamental equation relating the absolute velocities of points A and B and the
relative velocity of B with respect to A can be expressed in the form of a vector

diagram and used to solve problems involving the motion of various types of
mechanisms.



INSTANTANEOUS CENTRE OF ROTATION
/

the velocities of the points of a rigid slab in plane motion /]
IS based on determination of the instantaneous centre of

\) Another approach to the solution of problems involving # C
X
I\ _ / |
| \  rotation C of the slab. / |
|\ / |
|\ ;]
|\ / |
| \ / |
\
\ / |
\ / I
) I
\ / |
I
I

\

\

\ \ /
\
\




GENERAL PLANE MOTION - acceleration

Plane motion = Translationwith A + Rotation about A

The fact that any plane motion of a rigid slab can be considered the sum of a
translation of the slab with reference to point A and a rotation about A is used to relate
the absolute accelerations of any two points A and B of the slab and the relative
acceleration of B with respect to A.

dg = dp T Agja

where ag/, consists of a normal component (ag,, ), of magnitude ro? directed toward
A, and a tangential component (ag,, ), of magnitude ro. perpendicular to the line AB.




GENERAL PLANE MOTION - acceleration

Plane motion = Translationwith A + Rotation about A

The fundamental equation relating the absolute accelerations of points A and B and
the relative acceleration of B with respect to A can be expressed in the form of a
vector diagram and used to determine the accelerations of given points of various

mechanisms.

*\(aB/A)n
ag a \\) Imp(_)rtant note: |
B - The instantaneous centre of rotation C cannot be used
,’(aB/A)t for the determination of accelerations, since point C ,

in general, does not have zero acceleration.

a



THEMATIC EXERCISE 11

The “four body” mechanism represented in the left 5 O6m
figure has three bars, connected by two distinct points o 2
B and C. For the represented specific time, the bar CD
presents an angular acceleration of a,=5 rad/s2 and
angular velocity equal to wgp=2 rad/s, both
anticlockwise. Determine the angular velocity and
acceleration of the bar AB.

Velocity analysis of bar CD (fixed plane rotation):

\l\\\ ﬁ\m <
x

]

0] (0] (-0.225 _0.8 —0.45cos(60)] [-0.225
V. =J0l+d0lxd 039 L=J-045![m/s] Foc —[ 0.45 sin( 60) }—1 0.39 ;[m]
o|] |2 0 0 0 0

Vg =V + Vg c =V + dgc X Tcg -0.6 B ~08
Feg = 0 m Ve =¢-0.45,:m/s
0 0
-0.8 0 - 0.6 -0.8
Vo =4-045+< 0 x4 0 =4-0.45+0.6wy [m/s] 0
0 — 04 0 0 Ope = 0 rad /s
— Wpge



THEMATIC EXERCISE (cont.)

Being the motion of the bar AB considered as a fixed point plane
rotation, a velocity and acceleration analysis may be done:

Vg =Va+ Vg a=Vpa+ dpg XTpp Py = %%7755 *Z(I):(( j:;} _ %gzz}m S -
O 0 74 X
0 0 0.53 ~0.530 4
Vo =400+ 0 tx40.53¢ =4 0.58m,, [m/s]
0 @ 6 0 0
The velocity of point B calculated by this two expression should be equal.
0
_005'23*wAB 045_(()).86 o @, =1.51rad /s ® e :{ 0 }rad /s
53 *w =<-045+06*w
0 AB 0 BC ®g. = 2.083 rad /s - 2.083
0
OIS :{ 0 }rad /s
Acceleration analysis of bar CD (fixed plane rotation): 1.51
C
dc =ap +dep XTpe + dp ><((zjco XFDC): a)CDX((_bCDX?DC)
= gD + (50/0 )t + (é:C/D )n &CD X?Dé\

0 0
b, =10¢rad /s dep =10¢rad /s?
2 5)

115



THEMATIC EXERCISE (cont.)

~0.225 0 0)(-0.225
. =40r+40tx{ 039 b+d0tx|404 039 | |=
0 2 2 0
~1.95 0.9 ~1.05
=1-1.125}+{-1.6}={-2.725 tm /s’
0 0 0

Acceleration analysis of bar BC (general plane rotation):

dg = dc Tt Age XIg + @pe X(“’Bc ><ch)

~1.05 0 ~0.6 0 0 ~0.6
d,={-275t+4 0 tx!{ 0 t+{ 0 Ix 0 0 ¢ |=
0 — g 0 ~ 2.083 ~2.083]| 0
~1.05 0 2.6 1.55
=1-2725 0 +106%a, t+4 0 =1-2.725 +0.6*a, tm/s?
0 0 0 0

Acceleration analysis of bar AB (fixed plane rotation):
dg =8, +85/,

pe @ g X(@AB X FAB) @ ne

Q|
w
Il
jsbli
>
+
]
>
®
X
=l



THEMATIC EXERCISE (cont.)

0 0 0.53 0 0 ](0.53
i, = 0J+{ 0 }x 0.53 +{ 0 }x 0 Ho.53J =
0] |on 0 1.51 151)| 0
—0.53 *q ~1.208 ~1.208 - 0.53 * o
=1 053 *a,, }ﬂ—l.zosJ{—l.zos +0.53*aAB}m/sz

0 0 0

The acceleration of point B calculated by this two expression should be equal, then:

—-1.208 - 0.53 * a 4 1.55 X:-1.208 -0.53 *a 5 =1.55
—-1.208 + 0.53 *« —-2.725 + 0.6 * a y:—-1.208 +0.53 *,, =—2.725 + 0.6 * agp,
0 0
o ,; =5.85rad /s? 0 0
- _ 2 - _ 2
o g = 7.69 rad /2 dp =9 0 prad /s Ao = 0 rad /s
5.85 - 7.69
7.69rad /s”2 085rad /s
[t
B Ve
5rad /s?
5.85rad /s* N\ 2rad /s

607

B
a1
=
=

Q

Q
~
(%]

UK
PO

O
R X

117



VECTOR DIFFERENTIATION REGARDING
A MOVING COORDINATE SYSTEM

*The rate of change of a vector is the same with respect to a fixed frame of
reference and with respect to a frame in translation.
*The rate of change of a vector with respect to a rotating frame of reference is

different.

The rate of change of a general vector
Q with respect a fixed frame OXYZ
and with respect to a frame Oxyz
rotating with an angular velocity Q is:

(Q)OXYZ = (Q)Oxyz + Q X Q

The first part represents the rate of
change of Q with respect to the
rotating frame Oxyz and the second
part, Q x Q, is induced by the
rotation of the frame Oxyz.

/

. ANGULAR VELOCITY OF THE

" MOVING REFERENCE SYSTEM.
118



PLANE MOVEMENT (velocity)

Vp= QXTI Ve = (F)Oxy Consider the two-dimensional analysis of a
particle P , moving with respect to a frame F
P’ rotating with an angular velocity Q about a

fixed axis. The absolute velocity of P can be
expressed as:

“““ Vp = Vp:t+ Vpp

Where: v, = absolute velocity of particle P

Vp. = velocity of point P’ of moving frame F coinciding with P
Vpe = Velocity of P relative to moving frame F

The same expression for v, Is obtained if the frame is in translation rather than
rotation.



PLANE MOVEMENT (acceleration)

When the frame is in rotation, the expression for
the acceleration of P contains an additional term a,
called the complementary acceleration or Coriolis
acceleration.

dp = 8pt App T 8,

Where: a, = absolute acceleration of particle P

ap-= acceleration of point P’ of moving frame F
coinciding with P
ap;e = acceleration of P relative to moving frame F
a, = 2Q X (Moyy = 2Q X Vp

= complementary, or Coriolis, acceleration

Since Q and vy are perpendicular to each other in the case of plane motion, the
Coriolis acceleration has a magnitude a, = 2Qvp,,. Its direction is obtained by rotating
the vector vy, through 90° in the sense of rotation of the moving frame. The Coriolis
acceleration can be used to analyze the motion of mechanisms which contain parts
sliding on each other.



ACCELERATION - general equations

In three dimensions (3D), the most general displacement
of a rigid body with a fixed point O is equivalent to a
rotation of the body about an axis through O. The angular
velocity o and the instantaneous axis of rotation of the
body at a given instant can be defined. The velocity of a
point P of the body can be expressed as:

dr
:a:a)xr

Differentiating this expression, the acceleration is

a=aXr+wx(@®xr)

Since the direction of @ changes from instant to instant, the angular acceleration o
IS, In general, not directed along the instantaneous axis of rotation.



GENERAL MOTION

The most general motion of a rigid body in space
IS equivalent, at any given instant, to the sum of a
translation and a rotation. Considering two
particles A and B of the body

Vg =V T Vpp

where vg, IS the velocity of B relative to a frame
AX’Y’Z’ attached to A and of fixed orientation.

Denoting by rg,, the position vector of B relative
to A, we write:

where o is the angular velocity of the body at the instant considered. The
acceleration of B is, by similar reasoning

ag = a, + ag or ag=a,taxXrg,toX(®Xrg,)




PROPOSED EXERCISES

EP 15.4 — A small rotating pulley is attached
to a electric motor with nominal speed equal
to 1800 [r.p.m.]. When the electric motor is ,
turned on, all the assembly will take the

regime speed after 5 [s]. When the motor is O

off, the system takes 90 [s] to stop. If a
uniform accelerated motion is considered,
calculate the number of motor revolutions in
both conditions:

a) For normal operations conditions

b) For stoping after turning off. EP 15.8 - The element rigid body

shown in the left figure is made with a
welded axis ABC to the rectangular
plate DEFH. The assembly turns with a

100, 100 uniform angular velocity 9 [rad/s]
175 around the ABC axis. Knowing that the
vw;rkr;gvement Is anticlockwise, when
G D . (11 73 '
~_ king from “C”, determine the
100 velocity and acceleration of the vertices

C
F



PROPOSED EXERCISES
EP 15.44- The crank AB has a constant
| angular velocity of 200 [r.p.m.] in the
anticlockwise sense. Determine the angular
velocity of the bar BD and the speed of the
cursor D, when:

X a)e=00
b) 6=90°
c) 6=180°
Y
EP 15.60 — Knowing that the cursor velocity —
IS equal to 1.8 [m/s] from bottom to top, - A E160
determine for the illustrated configuration: 3B |
a) The angular velocity from the element AD 200 g
b) The velocity of point B @D X
c) The velocity of point A /] >
|~ —



UbROBLEM 15.248 — Thematic exercise 12

C Knowing that at the instant shown crank BC has a
constant angular velocity of 45 rpm clockwise,
determine the acceleration :

(a)Of point A,
A (b)Of point D.

1. Determine velocities in a body rotating about a fixed axis:

In vector form the velocity in the body is given by: y V=TI o
V=®XTr

Where v, ® , and r are the velocity of the point, the angular

velocity of the body, and the position vector from the axis to r

the point. The magnitude of the velocity is given by:
V=rw & X

where v, r, and o are the magnitudes of the corresponding ®

vectors. .
— 2 rad min \ _
Calculating the | . @ec = (4D TPM)(< -~~~ ) = 1.om rad/s

velocity of point B s = Wge g = (1.57 rad/s)(4 in) = 18.85 in/s

In crank BC. _
Vg = 18.85 In/s I
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PROBLEM 15.248 (solution)

2. Determine velocities in a body under general plane motion:
Velocities can be determined either by method of instantaneous center of rotation, or
by considering the motion of the body as the sum of a translation and a rotation.

Since point A is forced to move in the
vertical direction, and the direction of

B the velocity of point B is up, the
B C angular velocity of bar AD is zero (in
that instant): w,p =0

A



PROBLEM 15.248 (solution)

3. Determine accelerations in a body rotating about a fixed axis.

Calculating the acceleration of point B in crank BC. Since the angular velocity of
crank BC is constant, ag. = 0 and (ag); = 0. The normal component of the

acceleration at point B is:

3

= 9

2:Te Y
(aB)n X R — > /= - - o~
— dg =af +W CB+W><(W><CB)
C
Olgc =0 é’B:VT/x(*quB)

0 4 0 0
0 x< 0 ;[=1 0 prxq4wg
— Wy 0 —Wpe 0
88,83
0 tin/s?]
0
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PROBLEM 15.248 (solution)

4. Determine accelerations in a body under general plane motion:

(aD)y
(aD)x

Notes:
- The acceleration a, must be vertical;
- aLpp IS assumed CCW and w5 vanish in that instant.

—

1) 4,

= d, +Wx BA+Wx (W BA)
0 0

88.83 8Cos(0)
0 ++<3 0 x<-8Sin(@)+< 0
0 W, 0 W,

0 =88.83+8\,Sin(#) —8w>Cos(6)
a,, =8W,Cos(d) +8w.Sin()
o 0

=V, +w><BA

o > o
<
-

N

\7

K 8Cos(6) 0 8wSin(é) |
=118.85:+17 0 +x3-8Sin(0) r < V,, 1 =18WCos(0)
w, 0 0 0
From system 1) WZ—-12.82 [rad/sz_ and from system 2) a,,=-51.28 [in/s?]
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PROBLEM 15.248 (solution)

4. Determine accelerations in a body under general plane motion:

§D=§B+Wx§D+Wx(Wx§D)
(a,,] (88.83] (0] [-8Cos(d)] [0 0) (-8Cos()
a5, (=1 0 t+10¢xq 8Sin(@) t+1 0 tx|40 tx{ 8Sin(d)
0 0 W, 0 W, W, 0

(a,, =88.83—8\,Sin(0) +8w2Cos(0)

¢ ap, =—8W,Cos(#)—8w;Sin()
0=0

N

Knowing that w,=-12.82 [rad/s?] and w,=0 [rad/s], we conclude:
(ay), = 88.82 - (8 )(- 12.82 ) sin 60°
(ap), = 177.7 in/s?

(ap),=0-(8)(-12.82) cos 60°

(ap), = 51.3in/s*  ap=184.9in/s? 16.1° i



PROBLEM EP 15.90

The two cylinders air compressor
presents two 0.203 [m] long arms
BD and BE. Knowing that the
length of arm AB is equal to 0.0508
[m], and that it rotates at a constant
rate @ = 1800 [rpm], in the
clockwise sense. Determine the
pistons acceleration when 6= 0°,

- ——

TS-B2520HDD




PROBLEM EP 15.90 - ANALYTICAL SOLUTION

1. Determine VELOCITY of point B:
0 0.0508sin(A) 9.576 cos(#)
Vy =V, +W, x AB = 6+3 0 }x{o.o&somos(e)} = {9.5765in(9)}
~188.5 0 0

2. Determine VELOCITY of point D and ANGULAR VELOCITY of arm BD:
9.576cos(6)
W22 =

0 9.576cos(d) 0) (-o. zogsin(a) 0.203,/1-0.25%sin?(6)
U, =V, + W, xBD < vy, + = {-9.576sin(0) L +1 0 tx{ 0.203c0s(ar) Vo, =—9.5765in(0) - 9.576¢0509) _ 4 255in(s)

J1-0.25%sin?(6)

0 0 W, 0 00
9.576
_>9 _ OO:> WZZ = m = 4717[rad /S]
Vo, = 0[m/s]
3. Determine ACCELERATION of point B
d, =4, +W, x AB+W, x A
0.0508sin(6) —1805.0sin(6) 0
%10. 0508cos(9) -1-1805.0c0s(0)p L9 =00=a, ={-1805.0![m/s?]
~188.5| | |-1885 0

0

ap =dg +W2><BD+W2

0 —180503|n(0) —02035|na 0 0] (-0.203sin(x) ap, = —1805c0s(d) — 0.203, sin(er) — 0.203w? cos(cx)
A, | = —18050cos(49) +4 0 tx4 0.203cos( ) +4 0 tx|4 0 px{ 0.203cos(a) } | <= W _1805sin(6) —0.203w sin(a)

0 w,| | |w, 0 2 0.203w2 cos(c)




PROBLEM EP 15.90
NUMERICAL SOLUTION

[ SlAceleragdo de B 40
k\\ L A 1.32616+003 m/s™2
N Lullay 1,2444e+000 m/s"2
( \\[{eslotﬂf para Grade | el 1.8686e+003 m/s"2
R [ o 253 43e+U3 “/5"2
R

132




PROBLEM 15-250

A disk of 0.15-m radius rotates at a constant rate
X @, With respect to plate BC, which itself rotates
at the constant rate @, about the y axis.
Knowing that @, = @, = 3 rad/s, determine, for
the position shown the velocity and acceleration
(a) of point D, (b) of point F.

1. Determination of the velocities in general motion of a rigid body:

Vg =V, + WX g
Where vy Is the velocity of point B, v, Is the (known) velocity of point A, w is the
angular velocity of the body with respect to a fixed frame of reference, and rg, IS
the position vector of B relative to A. (a) Point D:
Vp =V +® X CD
Vp=(3]J) x(0.151) + (6 ) x (-0.15 1)

Vp = 0.45 k [m/s] 133

O=0,+t0,=3]+3]=6] [rad/s]



PROBLEM 15-250 - solution

2. Determine accelerations in general motion
of a rigid body:

ag =a, +aXAB+wx(wxAB)
Where ag Is the acceleration of point B, a, Is the
(known) acceleration of point A, o and w are the
angular acceleration and angular velocity of the
body with respect to a fixed reference frame, and
AB is the position vector of B relative to A.

ap=ac+t o XIpegt®X (0 Xy

ap = @1 X (@1 X rep) + @ X (@ X Ipje) Z
ap=(3J))x(3Jx0151)+(6))x[(6])x(-0.151)]
ap=-135i+54i & ap=4.051 m/s?



PROBLEM 15-250 - solution

A (b) Point F:

VE=V.+ o XCF
Ve=(3]J)x(0.151)+ (6)) x (0.151)
Ve =-1.35k [m/s]

ar=a.+taXEF+oXx(0xEF)

ar = ®; X (0; X BC) + o X (0 X EF)
ar=Bj)x(Bjx0.151)+(6]j)x[(6])x(0.151)]
ar=-1.35i-54i & ar=-6.751 m/s?



PROBLEM 15-256
Rod BC of length 24 in. is connected by ball-and-
¥ @;  socket joints to a rotating arm AB and to a collar C

AT that slides on the fixed rod DE. Knowing that
*rlength of arm AB is 4 in. and that it rotates at a

constant rate o, = 10 [rad/s], determine the velocity

of collar C when 8= 90°.
6 In

7 C

D

1. Determine velocities in a body rotating about a fix axis: y V=Taw

In vector form, the velocity of a point in the body is given by:
V=WXF

Where v, w, and r are the velocity of the point, the angular

velocity of the body, and the position vector from the axis to th

point. ()] X




PROBLEM 15-256 - solution

Determine the velocity of point B when 8= 90°:

Vg o, =10 k [rad/s] Vg = ®; X AB
rga=AB=-4] [in] Vg =10k x (-4j)
Vg = (40in/s) i
\X
X
2. Determine velocities in general motion of a rigid body: AN "
Vg =V, t®XIg ‘\\ .

Where vy Is the velocity of point B, v, Is the (known) velocity
of point A, w is the angular velocity of the body with respect to
a fixed frame of reference, and rg, Is the position vector of B

relative to A. Vo = (40 in/s) i
Ve = Ve K

o= l+ao ]+t ok

rC,B=4i-12j+20.4k 137



PROBLEM 15-256 - solution

Ve =Vg+t O XTI

vek=(40inis)i+ | 11 K
v, w0, o,
4 -12 20.4

Ve k=(40) 1 + (2040, + 12w,)1 + (-20.400,+ 4w)) + (-120, - 4 )K

Equate coefficients of i, j, k: [ 0=40+20.4a, + 120,
J 0=-20404+ ba,

_ VC — '12a)x = 46()y

Solve for v; : (First eliminate w, and then eliminate (3w, + w,). )

Ve = 7.84 [in/s] Ve = 7.84 k [In/s]



y
l PROBLEM 15-259

Rod AB of length 125 mm is attached to a vertical rod

that rotates about the y axis at the constant rate @, = 5
A rad/s. Knowing that the angle formed by rod AB and
the vertical is increasing at the constant rate dg/dt = 3
rad/s, determine the velocity and acceleration of end B
of the rod when = 30°.

b Vg

1. To determine the velocity and acceleration of a point of a body rotating about a
fixed point (Determine the angular velocity w of the body):
The angular velocity w with respect to a fixed frame of
Reference is often obtained by adding two component angular
velocities w, and w,,.

®, = 5] rad/s
w,=dpldt =3 rad/ls, ®,=3k rad/s

0=-0,+tw,=5]+3k radls




y
PROBLEM 15-259 - solution l

o
1b. Compute the velocity of a point of the body: L
The velocity v of point B in the body is given by: V=WXT
where r is the position vector connecting the fixed point O to point B. A

The velocity of end B: For B=30° and rg,=0.125 5

rg,a = 0.125sin30° 1 - 0.125 cos30° j = 0.0625 i - 0.1083 j

i ] Kk
Vg = X I'gjp = 0 5 3
0.0625 -0.1083 0

Vg =0.3251+0.188 ) -0.313 k m/s

1c. Determine the angular acceleration a of the body:
a is the rate of change (W)oyyz Of the vector w w.r.t. a fixed frame of reference
OXYZ, (W), is the rate of change of w w.r.t. a rotating frame of reference oxyz, Q
Is the angular velocity of the rotating frame.

0 = (W)oxrz = (W), +Q2xW 140



YIY
l PROBLEM 15-259 - solution

Frame OXYZ is fixed.
Frame oxyz Is attached to the vertical rod and rotates
with constant angular velocity w;.

Consequently: w, =0 and Q =w,

a=0=n,+o,=0+,
1d. Compute the acceleration of a point of a o = (@2 Joxvz = (@ 2oxy, + Q2 X @,
Az =0 X I+ @ X (@ X gy 0 =04 ]k
Where aj is the acceleration of point B, a, is 0 50
the (known) acceleration of point A, a and ® 0O 0 3
are the angular acceleration and angular _
a=151 rad/s?

velocity of the body with respect to a fixed
frame of reference, and rg,, Is the position
vector of B relative to A.



l PROBLEM 15-259 — solution

0,

The acceleration of end B:

Recall: ®=5]+3k [rad/s]
a=15i1 [rad/s?]

Fgn = 0.0625 i - 0.1083 |

BN Vg = ® X gy = 0.325 +0.188 j - 0.313 k [m/s]

g = O X Tgn+®X(®XIg,)

g = QX gy +® X Vg

i i K i j k
az= | 15 0 0 | + 0 5 3
0.0625 -0.108 0 0.325 0.188 -0.313

a,=-2.131+097j-3.25k [m/s7



SLIDING BAR EXERCISE

The bar sliding down the wall is represented in the figure, using translation rigid
joints at the extremities. For a given initial data, calculate the velocity and
acceleration of the extreme points.

BES | Dynamics
File Menus Took Help

Gen. Plane Motion Bar Sliding Down Wall

- Input

Length:

Initial Angle:

Inilal X Yeloclty:

x Acceleration: |

- Output
PR o e
Cian)s  [_00tjeds
: 000 Jracts?

A B
Position: [ 003|[ 010|m

Velucity: | 005  -001 |mis

Accel: [ 001][ -003|mss® Recet | St |
|_IC off | Vectors Off |

Sduton |  MainMenu | Previous Menu | | 4u |mp




SLIDING BAR EXERCISE - solution

BEST Dynamics _ (=] =]
fle Menus Tools |l=lp

Gen. Plane Motion Bar Sliding Down Wall

BEST Dyrniamius

Zile Menus JTools Help
Gen. Planc Motion  Bar Sliding Down Wall

Input

Inpul
I ength: ;i m

Initial Angle: deg

Initial x Yelocity: | 5.2 g mis

Length: [0 :I m
Initial Angle: | 15.0 :j dey

Inital x Velochy: | 5.2 |31 mis

x Acceleration: mjs?

x Acceleration: o ;j mjs?

~OQutput ————— _
nm.}-‘ ¢:[ 45]deg :[_8i]de
- H 001 |radjs F[__ooa]rauss
[uoh] @i [ 001 |radfs® P [ 099]radss?
A B B
Position: 007 ][ 007 |m Position: 002 ]| m
Velacity: [ 006][ -006|m/s Velocity: -040
Accel: [ 007 [_-071] mis? Accel: o0z ’
[ _ic o# | Vestors off |
[ Sdution |  MainMenu | Previous Menu | | 4a|mp | Souion | MainMenu | Previous Menu | | 4s|mp|
Solution: Bar Sliding Down Wall | Solution: Bar Sliding Down Wall
Solutions Available for Bar Sliding Down Wall Absolute Analysis, Dependent Motion
(Figures & blue numbers in these solutions correspond to current problem) Step 1: Write an equation for the length of the bar involving
Absolute Analysis +y the positions x, and ys.
Degender_ut Motion TINEB L2 = x,2 + y,2
Earametr!c Method Yg L Rearranging,
Relative Velocity il vo = [12 - x 2]3
Scalar Cquations XA +X s ; o) : : :
Y Step 2: Differentiate this to obtain a velocity equation,
Velocity by Given: L, 8, ¥, a4 where:, : Y - ;
b = = _14(2 [LZ 2] -3
Instantaneous Center Find: Xa: Ya: Y2 Vo e f Ve 2( Xa %4 )L = x4
Relative Acceleration ag, w, & Simplifying, :
: I . -4
Scalar Equations Ve = ¥p = —Xa Xa[L2 - %,%] 2
Cross Products

o] =] =] (o [ =y



SLIDING BAR EXERCISE solution

Solution: Bar Sliding Down Wall Solution: Bar Sliding Down Wall

Solution: Bar Sliding Down Wall ~ Solution: Bar Sliding Down Wall




SLIDING BAR EXERCISE - solution
- Solution: Bar Sliding Down Wall

Solution: Bar Sliding Down Wall




SLIDER CRANK MECHANISM

The slider crank mechanism is represented in the figure, using rotational pin
joints at the left extremities and translation joint in the right point. For a given
Initial data, calculate the relative velocity and acceleration of the crank body and

the instantaneous centre of rotation.

BEST Dynamics [_ 8] %]
Filo  Mows Tods Help

Cen, lanc Moiron Sllder — Crank

~ Input T — QOutput i
002 I%I 005 |ﬂ = Link &8 Link BC Zlidzr

Ceavte 6:[ 03| 0iz]dea x[__o007]m
Initial 6:| 30.0 |3 deg : :
w:[_ 008][ 003]redis v:[ 011]|mis

Iitial w: | ;,'rad;s a:[ D0D|[ 011 |raqis? w130 |mje?
0 [ rauis? A e lime:[_0.00]ser

Solution Main Menu | Previous Menu | -




SLIDER CRANK MECHANISM - solution

BEST Dynamics

BEST Dynamics _[51%]

Eile

Mcws Tods Hclp

Cen, anc Motroa

T Input e Lekbe
Length: =
Inilial 6: deg

Tiitial w: 03 |$ radfs
o 0.0 T;JJ rauds’

~ Output CInput e LEe
Link&8 Link BT Zlidzr
o[ 12| oo]des  x[_0odJm Lengt |02 55D 3]
wi [ 008][00z]radis v _ori]mic L dea
“:l [ii]1) ” 2022 ||-ad;g2 a:l 090 |mfsz Initial w: 08 |3 radfs
Abae 4 lime:[ 000 |ser @ | 0.0 |3 aus?

|_Reset | conunue il Step |

Solution

Fle Mcws Tod: Hclp

Slider - Crank

Cren. anc Motron

eI E3

Slider - Crank

Main Menu | Previous Menu | ﬂ

— Output
Link&8 LimkBC Slidzr
o[ _malees  <[_wm
I R
a:[ D00|[ OTA|radis® =  -120|mys®

A-.-G,_t "'GE.‘?N [ ime:set:
[ Reset W Contnue

Main Menu | Previous Menu | | da [ m |

Solution: Slider - Crank

Solutions Available for the Slider-Crank Problem

Absolute Analysis

Relative ‘felocity

Nelative Acceleration g/&

e

Instantareous Center

Given: 1y, 15, 8., 0y, 4

Find: X, Vg, 8g, 0, wsa, 3
e[ o[5]

148



SLIDER CRANK MECHANISM - solution

Absolute analysis Relative velocity

Solution: Slider - Crank i Solution: Slider - Crank

Relative acceleration Instantaneous centre of rotation

Solution: Slider - Crank Solution: Slider - Crank

Cap.5



REVISIONS ABOUT ROTATION

e Rotation About a Fixed Point “O*:
— 01+02 is different from 02+01.
— finite rotations cannot be treated as

vectors, since they do not satisfy simple
vector operations such as the
parallelogram vector addition law.

— Infinitesimal rotations indeed behave as
vectors.

— angular velocities can be added
vectorially, ex: W=w1+w2.

g
P

0,1 + 6,7 0,5 + O

150



PLANE MOTION OF RIGID BODIES:

FORCES AND ACCELERATIONS

ale The relations existing between the

~ forces acting on a rigid body, the

Ma  shape and mass of the body, and the

motion produced are studied as the
Kinetics of rigid bodies.

— In_general, our analysis is restricted
to the plane motion of rigid slabs
and rigid bodies symmetrical with
respect to the reference plane.

The two equations for the motion of a system of particles apply to the most general
case of the motion of a rigid body. The first equation defines the motion of the mass
centre G of the body. _

2F =ma

where m is the mass of the body, and a the acceleration of G. The second is related to
the motion of the body relative to a centroidal frame of reference.

SM = Hg



GENERAL EQUATIONS FOR PLANE MOTION

>F =ma

Mg = Hg

Where f—lG IS the rate of change of the angular momentum Hg of the body about
Its mass centre G.

These equations express that the system of the external forces is equipollent to the
system consisting of the vector ma attached at G and the couple of moment I—ig.

For the plane motion of rigid slabs and rigid bodies
symmetrical with respect to the reference plane, the angular
momentum of the body is expressed as: _
He = lo

where | is the moment of inertia of the body about a
centroidal axis perpendicular to the reference plane-f
w is the angular velocity of the body. Differentiati
both members of this equation




GENERAL EQUATIONS FOR PLANE MOTION

For the restricted case considered here, the rate of change for the angular
momentum of the rigid body can be represented by a vector of the same direction
as o (1.e. perpendicular to the plane of reference) and of magnitude la.

> Mg=Ta > F,=ma, Y F,=ma,

The external forces acting on a rigid body are actually equivalent t0  ovener 16, 1727 - october

Jean le Rond d'Alembert

29, 1783) was a French

the effective forces of the various particles forming the body. This manenatcn, pnysicst

mechanician, and philosopher.
He was also co-editor with

statement is known as d’Alembert’s principle. D'Alembert showed oeis oieor o e
that one can transform an accelerating rigid body into an equivalent

static system by adding the so-called "inertial force" and "inertial

torgue™ or moment. The system can then be analyzed exactly as a

static system subjected to this "inertial force and moment" and the

external forces. _
> Mg-Ta=0 > F-ma,=0 Y F,-ma, =0




ALEMBERT’S PRINCIPLE

Alembert’s principle can be expressed in the form of a vector diagram, where
the effective forces are represented by a vector mag attached at G and a couple
l;a.

In the case of a slab in translation, the effective forces reduce to a single
vector mag ;

swhile in the particular case of a slab in centroidal rotation, they reduce to the
single couple ;o ;

in any other case of plane motion, both the vector mag and l;o should be
included.

Zlf — maG :_O

—

Z IE + IEinertia =0

This method can be used to solve problems involving the plane motion of several
connected rigid bodies. Some problems, such as noncentroidal rotation of rods and
plates, the rolling motion of spheres and wheels, and the plane motion of various

types of linkages, which move under constraints, must be supplemented by
Kinematic analysis.




THEMATIC EXERCISE

A homogenous bar with 71.2 [N] of
weight is pinned connected to two
distinct  frictionless  translation
joints, located In a vertical plane.
Calculate the force F necessary to
promote a normal reaction of 35.6
[N] (vertical) in to point B and the
corresponding bar acceleration.

_ _F:man
Y E=ma; < {Rc+Rs—712=0
0=0
> Mg =H; =0
( 0=0
& S 0=0

10,33R. —0,109%35,6 - F x0,1905=0

Solution: F=41,3 (N), a..=5,68 (m/s?
(), 8ex=5,68 (M)




ANGULAR MOMENTUM

By definition:
A, = [GPxV,dm
M
A, = [0BxV,dm
M

Relation between: (1° Koenig theorem)

H, = '(OG +GI5)>< (\7G +Wbodyc;|5)dm

OG x (Vg +Wypgy x GP M + [ GP x (Vi + W,y x GP )i
M

G xVM +0+ [l Wy, |
éx\/}M + HG

I
o O =

Samuel Koenig, German
physicist , (1712-1757)




KINETIC MOMENTUM - SPECIAL CASES

1- Body in translation

—_

HG — 6 Because W=0 !!!
l:io — OG X MVG

2- Fix point rotation about point O

H, = jOﬁx(\/V x OP)dm
M

=[1o Jw}

3- Three-dimensional general movement

— —

He = [GPx (V; +W x GP Jim A = . +0GxMV.
M

(1° Koenig theorem)
=[1¢ Jw}



DYNAMIC MOMENTUM

Time differentiating the angular momentum, normally calculated into a non fixed
point, we obtain:

Y1

'Ul

;O:;jhjﬂ
(

)><V dm+jOP><C\I{[Pdm

M

_ .'(\7P ~V,)xV,dm+ | OP x &,dm
M

M
s = Vg x MV, + R,
Z
Being “O” a fixed point > Ko = ﬁo
Being “O” coincident to point “G” —— Ks = lj'e
Other cases: > Use of general expression




1- HG:“GNN

2. KG:ﬁG:[I ]

CONCLUSION

ALWAYS !l

H+1s W

+Qxﬂl]

)

Special case: general plane motion with symmetric body to plane OGY

:

I XGXG

[IG]: _PXGYG
0

- PXGYG

I YG YG

0

\ 4

A
()
[l

T

&« ™

XG

- 4

ZG

L X 3

159



EXERCISE: RIGID BODY IN ROT. TRANSLATION

600 [mm]

S=

—

For the rigid plane body, moving in
rotational translation, with mass M,
connected with two straight massless
bars to the same number of fix pin
joints.

Knowing that the rigid plane body is
moving In to a vertical plane,
determine the connecting forces
between the bars and the body, for
the angle 45°.

160



Solution: Rigid body In translation

Cinematic solution: Determine the

=3 .
£ mass center acceleration.
= R
O éG:éB+WxBG+W><(\NxBG)
1
%) .
] §B=§C+QXCB+Q><(Q><CB)
0 —L 0 0 —-L
| =0+4 0 'x4 0 t+2 0 tx|4 0 tx{ 0
’ —é 0 —a| ||-a 0
a’l
=< alL
0

Determine the dynamic momentum (time derivative of the angular momentum)

Ao =[] w0

.
—

He —0+0x0=0



_)
Solution: Rigid body In translation

Dynamic Solution system: =
=
SE-Ma <« |RA+RB-Mgoos@)=M (afL S
© ~Mg sin(a)=M & L )
i

ZMG = KG = HG & RAx%xsin(a)—RBx%xsin(a)zo
!

5_—9 sin(a) _
L
By direct substitution:
P Sm(a)@ da de :—gS|n(a)<:> dar . _—g Sm(a)@ddd:—gsin(a)da
L da dt L da L L

By direct integration:

.2
jo’t da = I—%sin(a)da =N % =%cos(a)

By direct substitution: RA = RB = > Mg cos(a)

:




EP 16.163 — DYNAMIC R. — Thematic exercise 13

The motion of a square plate of side 150 mm and mass
2.5 kg 1s guided by pins at corners A and B that slide Iin
slots cut in a vertical wall. Immediately after the plate
IS released from rest in the position shown, determine:

(a) the angular acceleration of the plate;
(b) the reaction at corner A.




EP 16.163 - DYNAMIC REACTIONS

1. Kinematics: Express the acceleration of the
center of mass of the body, and the angular
acceleration.

2. Kinetics: Draw a free body diagram showing the
applied forces and the inertial components.

B 3. Write three equations of motion:  Three
A o equations of motion can be obtained by
30 expressing the x components, y components, and

—_ L]
7. ] moments about an arbitrary point.

—

1. Kinematics: a, =4, +w><AB+w><W A For this instant, W =0.

—a,sin30)] [-a,+3/2 0) (0.150
—ay, cos(30) ¢ = A1/2 +4 0 ix

0

—a, sin(30) —aAJ_/Z }

—a, c0s(30) r =<a,1/2-0.150«
0 0

. a,/3
a, ! =1ax0.075
T



EP 16.163 - DYNAMIC REACTIONS

1. Kinematics: (cont.)

8, =4, +Wx AG+VTI><(\TV>< AG)

—a, cos(30) 0 0.075
a,sin(30) ¢+4 0 $x40.075
0 -a 0

~a,+/3/2+0.075¢
a,1/2-0.075a
0

0.0101 «
-0.0375 «

0

2. Kinetics: Angular and dynamic momentum

l, 0 0]f0 0 |
He =[lcJwj=] 0 1, 0} 0} ¢>H, 0  => Hg=
0 I, [|-W -1,w
_i 2 i 2_i 2 2 — 2
=1yt 1y, = oma’ + = mb _12m(a +b?)=0.009375 [kg.m?]

165



MOMENTS OF INERTIA FOR COMMON SOLIDS
AROUND SOME OF THEIR PRINCIPAL AXES

SOLID/AXIS

MOMENT OF INERTIA

cylinder about symmetry axis

LMR?

cylinder about central diameter

LMK + LM R?

ellipsoid about principal axis

%.-U (b + ¢*)

elliptical slab about major axis

LM (312 + 4h2)

elliptical slab about vertical

%:’\[{ a® + *)

rectangular parallelepiped about major axis

L(b? + )M,

ring about perpendicular axis MR2
ring about diameter IMR?

rod about end LMR?
rod about center SMh?
sphere about diameter IMR?
spherical shell ZMR?

torus about diameter

%{ Sa* + 4¢* )M

torus about symmetry axis

{%ﬂ.“’ + M

-

166



EP 16.163 - DYNAMIC REACTIONS

W = 2.5¢

>F =ma

[l
T-
()

Mg

—R; c0s(30) + R, sin(30) — 2.5¢g sin(30) = m 0.0101x
R, c0s(30) + Ry sin(30) — 2.5g cos(30) = m (- 0.0375)a
< 10.075R, 1/2 - 0.075R, +/3/2 — 0.075R, +/3/2 + 0.075R, 1/2 = ~0.009375¢

0.5 ~0.866 —0.02525](R,] [12.2625
© | 0866 0.5 0.09375 {{R, !\ =121.2393
{0.02745 ~0.01745 0.009375}{05} { 0 }
R, 21
& IR, b={-352
a 51.2
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COMPUTATIONAL SOLUTION

Interactive physics: Angular momentum, velocity, acceleration, contact force.

Al (kgm”Z1adts)

0.000

Angu[arMumenlumuquuarﬂ_""E ’

,,,,,,,,

(ms™2)
[0 SA2

| =

-LE2]

0.545 rad
0.000 rad/s

-47.926 rad/s™2

77777777777777777777777777777777777777777777777777777777777777777777777777

T LT T T

0.000N
21.668N
21.668 N
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PROBLEM 16.153

| | The axis of a 5-in.-radius disk is fitted into a slot

2 that forms an angle @ = 30° with the vertical. The

disk is at rest when it is placed in contact with a

5y conveyor belt moving at constant speed. Knowing

that the coefficient of kinetic friction between the

disk and the belt is 0.2 and neglecting bearing

@é — friction, determine the angular acceleration of the
disk while slipping occurs.

1. Kinematics: Express the acceleration of the center of mass of the body, and the
angular acceleration.

Once in contact with the belt the disk rotates about a fixed
point (its center). The acceleration of the mass center is zero,
and the angular acceleration is a.

2. Kinetics: Draw a free body diagram showing the applied forces and an equivalent
force diagram showing the vector ma or its components and the couple la.




PROBLEM 16.153 - SOLUTION

Kinetics: draw a free body diagram.

Write three equations of motion.

(¥F,=ma,; 0.2N,-N,cos30°=0

< ZF,=ma,: N,;+N;sin30°-mg=0

2

-
{ N, = 0.896 mg

— 2
a=27.7 radls p—

T 5y - 1 512
>M- =l 02N, (=) = m( =2



PROBLEM 16.158

The uniform rod AB of weight W is released from

/\ -
rest when g = 70° Assuming that the friction force is

L

zero between end A and the surface, determine

Immediately after release (a) the angular acceleration

Lo \ﬂ of the rod, (b) the acceleration of the mass center of
A the rod, (c) the reaction at A.

1. Kinematics: Express the acceleration of the center of mass of the body, and
the angular acceleration.
] B

(Aga) = a g = =

dg = dp T dgp

G
8 =-a, 1+ a% sin70° 1 - a% cos70° (@cin);
ag = (-a, + a%sinmo) | - a%cosmoj {/



PROBLEM 16.158 - SOLUTION

B B
G
+ (Ag/ak
o
=0 P
A

2. Kinetics: Draw a free body diagram showing the applied forces and an effective
force diagram showing the vector ma or its components and the couple la.

W = mg B maGy B
| = %mLza
L G - < ma
ma., = m(— a, +aESin7O°j — GXx
. | o
mag, = —m(aECos7O°j A A

RA




PROBLEM 16.158 - SOLUTION

3. Write three equations of motion: Three equations of motion can be obtained
by equating the x components, y components, and moments about an arbitrary
point.

(a) The angular acceleration of the rod: Moments about point P
mg (% cos 70°)= m« %cos 70° (%cos 70°) + ﬁ mL? o
B 6 g cos 70°
“TL[1+3(cos70°)?] a=1519 (g/L)

(b) The acceleration of the mass center:

YF,=ma,; 0=m(-a,+ a% sin70°)

a, = a5 sin70° = 1.519°5 ¥ sin 70° = 0.760 g
ag = (-a, + a%sinmo) | - a% cos70°

Substitute for a, and o : ag =0 i-0.260 0]



PROBLEM 16.158 - SOLUTION

o =1.519 (g/L)

Mag,

mag, =m(-a, + a% sin70°)

cos70° mag, = - m a% cos70°
(c) The reaction at A:
2F,=ma,: RA-mg:-maz%cosm0
R,=mg-m a% cos70°
Substitute for o : R, = 0.740 mg R, =0.740 mg



Problem 16.11

i \ 30°

The support structure shown in the figure is
used to move up cylindrical objects from one
level to another. Knowing that the static friction
coefficient is equal to 0.25 between the support
and the object, determine:

a)The acceleration “a” that tends object to slip.
b)The smaller ratio between h/d that tends
object to rotate down, before slipping.

P—

G IVEW! 4, = O ZS

@_. {a\ A FoR CAN
7o SLI0F
(4) spsLiesr reamo
i For TiPemé piEFoeE
CaN SL/IDES

=
W - = Z5 =
i ey F=mma cos 32
i Az
il o ¥ t2h =27 e
N =9 =me s 30°
g ' i
s Ve o (5 + sinse)
= Pl Dl 30" * -fasm:')’oo—‘fa cos¥
=2 D28 = : A
o (SR 2% (3 +2 5% 30°) 3.3
- - [ | 3 4'30"
5= s emannn 430 -
{ me ) IMp= Ty
; - . L 5
TTE(= (] A
z
A d
£t L=
NI = ; "
4 o v Lls Rr= =3 Ch)/__._:/f_ <
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B — b

\I (( / B,
2 p D
10in. ‘ A / \\
/ NE
/ \T '\
‘ J"f ,r'ff \\\. ““‘
‘ {— :B D ||
P | \ 8i ,’ ,““
Ll m. ./
| | \\%( ////
\\ N / //
) &\:';:* ":;55-"///,/ £

|-<7 15 in, ——

A disk with 203 [mm] radius is part of a
breaking system which is connected to a
flying wheel (not represented). The inertial
moment of both components is 18.98 [kgm?].
The movement is controlled by means of a
brace, being the kinetic friction coefficient
equal to 0.35. Knowing that initial angular
velocity equals 360 [rpm] anticlockwise,
when a 333.6 [N] force is applied under the
pedal, determine the number of revolutions

necessary to stop the disc.

Jaa Problem 16.30

BEForE 17 cormES
15 in ———{ 78 KEST
LEVER ABC.: =7A7mc L@uitirreron (FRICTIoN Forck J’)
-___"ﬁri — Ay
F s . s = = <
7 ¢ A o 3 O, 25N
| 75 N D) M o :
‘ /’ | il A ' , o B p / )
[’ F 10/ Nl 7o 1,) A2 p)=(2§ ;b]?zn)v =o
Y s -
& nf' bk - 2(0.35N) — £28 =0
2 N = £ /
/o _/l | | = e
L a2 i | N= 22.58%
_— L 245, . oy
oL = e N=0O,38(77,§&8// = 2540 /b
DRum
® r=8i P N
Y |

MO NUMBE?Z &6 F

[CEVO Luzzpns OF (IPUAF

i { : \ [ T Y=8m = 24
— AR |l g - | - s

N | / &), = 366 '/’?”{ so
Fz 26041 S—— Wy = 12 7?./44//;
4_’{ — ; S ’L-y’c :',/_Jj C o/
(256} Z4) (14 16 F6: 5%

oA = L 7097 rad/s® (DEcecerzn7ion)

Wt e > =127 r.-u-/s; + 2._/— (2097 ra -Ms‘)f-‘)
E =S5E2Y rad
= £82,4 aad( ;'/(h\,‘: 732,47 rey é‘ - 3?3,.»5 rey ‘J
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Problem 16.129

A

500 mm =i

E
A
% == 9 —
,/ 30° B

A uniform bar AB with 3[kg] mass
IS connected to the winch BD and to
the mass less cursor, which may slip
over EF. Knowing that for the
represented position BD rotates with
15 (rad/s) of angular velocity and
with 60 [rad/s’] of angular
acceleration, both clockwise,
determine the reaction at A.

80

,mm

DY, Wro=/Sradf, ;L’Br[o-ogm;/:rm/s).-/.z”/,e—
0,08 ™

E(go-JOfad'/S
4 e (2, ) (oogm)(éom%) %8 mfy” ——

(agj,:’ [o.cgm) /s raa’/g) = /ém;/g

CRANE .BD:

VELeC)TY: [NSTANZ. €772, AT
Cg:‘(O..,s'm)/tan 2052 O.RE602 vy
Vs  LZmfs rad
W =—= — —
— A8 c<r 0. 303 m z 38535 2
ACCELERA TION
_ (_43)57—494/;" [: a, /a)}, ( 4‘/,),’
an & ]. /8 8 /g ) \ Lasg
‘} \'5 8l = g Gr B + ( s ﬁ:
3075 = e et 43 A N xed
(2g) =t 5o el 4’ ’;G A8

| oz.s-..la 25w I (aﬂe)
t

Eoge) = (AR) a5 =08 ot
(Bpia), 7 (AB) g0 SXIZ8H) = O, 9% mfe™—

/a)z (68)clpg = ©L25 Apg ¥
(apg) 7 (6@ wipg =(0:25)), v2ss) 2048 o fe

/:z)t

_@A:' Lo S8 3/5:3'2"@@/A)£ % (.a‘ﬁ’/»)fa

(20 232 [raw (1] 4 [o. 500 ] [o56 ]

L Fpeos’= 48-0.9% ; A, = 4,43% o fs D 3

+1 (4439)sm "= 18 — S Wpp 7 ™ 3‘/.{4{@:1/5‘5
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Problem 16.129

e :--a,e-f-d

—_—

e~ 27Cr)s + (Agy, ),
[ 2535 (o} 1] o5 ] o ot =
L @pcos3’= 42-0.9% ; Q= 4435 o fo 2D 2

< 500 mm ‘i

QA' A= Qg+ = Qg+ (Aspy), + (4g/5),
= =
. /300 a:[4% .,.-]4.[/3 ﬂ +[o.25(3464) J,].; [o. 48 —>]
N $a=48-048-422 ; a,=%32 w/g’-a-
F +1 Ay =18~ 7.872= /0,108 ; 2y =/0./08 mfs*
KINEZ7ES T= 7o m(s8)= %EZM" =) 50,0425 Bgm"
W:fmﬁ 77 7
B 1 &y ; T
" (€ _loam M G| N
4o 1 8 A ; .
A [o25m | ozsm | ~

Tk m(AY= 2 (p.cm) -o0.
FAIMg= Z(Mg) ot }
(A smge®)0.Sm) - mg(0.28m) = o L ma, (0:25)
0433 A~ (3439, 81 m)s?) 0.25m) = — (0.0625hgw V31564 ")
+(3Ra) 10. 108 m[s*){(0. 25 m)
O0.433A4 - 2388 =~/ 7723+ J. 88/

A= 274N .
a= 2997 Lb0°




Test exercise - revisions

« Right figure represents a complex
mechanism, built with two straight bars AB
and BC, each with 2 and 3 [kg] mass. Bar
AB is connect to a disc in vertical position.
Disc is rotating clockwise at constant rate,
with angular velocity of 6 [rad/s]. For the
represented position, determine the dynamic
reactions affecting bar AB.

e Formulae;
— Tabulated data:
1
IYG = ng :Elﬁnl_2

— Parallel axis theorem:

2
| =1, +m.d

120 i
A |-— mm | 5
@ Q

mimn

T_——
60 mm / \
l [ []O )
180
Cfo)
X
I
/ TG
" w
~h
Yo .

iyge)



KINETICS OF RIGID BODIES IN THREE
DIMENSIONS

The two fundamental equations for the motion of a system of particles

>F = ma

provide the foundation for three dimensional
analysis, just as they do in the case of plane
motion of rigid bodies. The computation of
the angular momentum Hg and its derivative
ks , however, are now considerably more
Involved.
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KINETICS OF RIGID BODIES IN THREE
DIMENSIONS (CONT.)

The rectangular components of the angular momentum Hg, of a rigid body may be
expressed in terms of the components of its angular velocity w and of its centroidal
moments and products of inertia:

Hx = +|xwx ) Ixy(*)y xzW7
6) 6))

Hy = -l,o,+ 1o, - 1,0,

H =-1 0, - Izyooy + 1o,

If principal axes of inertia Gx’y’z’ are used,
these relations reduce to

X

X

€))
» (0

ly y’
.o,

HX,
Hy1
Ccaps | H



KINETICS OF RIGID BODIES

In general, the angular momentum Hg and the angular velocity w do not have
the same direction. They will, however, have the same direction if w is directed
along one of the principal axes of inertia of the body.

The system of the momenta of the particles forming a rigid body may be reduced to
the vector mv attached at G and the couple Hg. Once these are determined, the
angular momentum H, of the body about any given point O may be obtained by
writing

Ho=rxmv+ Hg
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FIXED POINT ROTATION

In the particular case of a rigid body constrained to rotate about a fixed point O,
the components of the angular momentum Hg, of the body about O may be
obtained directly from the components of its angular velocity and from its
moments and products of inertia with respect to axes through O.

Hy = [lo].w
0 since: Vg =WxF
|, =1, +Md?
X
Hx = +|x®x ) Ixy(Dy B Ixz(Dz
H, =-lo,+ 1, 0,- 1,0,
H, =-, 0, - Izyooy + o,



PRINCIPLE OF IMPULSE AND MOMENTUM

The principle of impulse and momentum for a rigid body in three- dimensional

motion is expressed by the same fundamental formula used for a rigid body in plane
motion.

Syst Momenta, + Syst Ext Imp,_,, = Syst Momenta,

The initial and final system momenta should be represented as shown in the figure
and computed from

H, =+, o -IXy y I_oo
Hy—-l o, +Iyooy I L,
H,=-Lo, -1 Oy |, ®,

Or, in the case of principal axes of inertia:

He = oo,  Hy =10,




KINETIC ENERGY OF A RIGID BODY

The kinetic energy of a rigid body in three-dimensional motion may be divided into
two parts, one associated with the motion of its mass center G, and the other with
Its motion about G. Using principal axes x’, y’, z’, we write

1 1 = .
- = 2, = 2 2
T = > mv ¢+ 5 (I, o + Iy,(oy, + IZ,Q)Z,Z)
where v = velocity of the mass center
w = angular velocity
m = mass of rigid body
1., E . = principal centroidal moments of inertia.

In the case of a rigid body constrained to rotate about a fixed point O, the Kinetic
energy may be expressed as

1 2 2
-2 (Ix’mx’-l- Iy’(Dy’+ Iz’(’oz’z)

The equations for kinetic energy make it possible to extend to the three-
dimensional motion of a rigid body the application of the principle of work
and energy and of the principle of conservation of energy.
ap.
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DYNAMIC ANALYSIS
SF=ma | Mg = Hg

X’ The fundamental equations can be applied to
the motion of a rigid body in three
dimensions. We first recall that Hg represents
the angular momentum of the body relative to
a centroidal frame GX’Y’Z’ of fixed
orientation and that H, represents the rate of

change of Hg with respect to that frame. As the body rotates, its moments and
products of inertia with respect to GX’Y’Z’ change continually. It is therefore more
convenient to use a frame Gxyz rotating with the body to resolve w into components
and to compute the moments and products of inertia which are used to determine Hg.

H represents the rate of change of Hg with respect to the frame GX’Y’Z’ of fixed
orientation, and QQ equals the angular veloc:|ty of the rotating frame Gxyz.

(H )nyz +Q X H
186



EULER’S EQUATIONS OF MOTON

If the rotating frame is attached to the body, its angular velocity Q is identical to the
angular velocity o of the body.

Setting Q = w , using principal axes, and writing this equation in scalar form, we
obtain Euler’s equations of motion.

SF=ma XM= Hg

HG = (HG )nyz +Q X HG
Substituting I.—IG above into X M,

ZI\/IG = (HG )nyz +Q X HG
187



FIXED POINT ROTATION MOTION

In the case of a rigid body constrained to rotate
about a fixed point O, an alternative method of
solution may be used, involving moments of the
forces and the rate of change of the angular
momentum about point O.

ZI\/IO = (HO )Oxyz +Q X I_IO

Where: £Mg = sum of the moments about O of the forces applied

to the rigid body
H, = angular momentum of the body with respect to the

_ frame OXYZ
(Ho)oxy, = rate of change of Hy with respect to the rotating

frame Oxyz
Q) = angular velocity of the rotating frame Oxyz



Thematic exercise 14

A disc of radius “r” and mass
“M” rotates without slipping in
the plane ground. The disc axis
OG rotates In a socket ball
fixed rotational joint, point O,
with a constant linear velocity
“V” at point “G”, being always
In vertical position.

Calculate the contact reactions.

1. Kinematics: Express the acceleration of the body mass center, and the angular
acceleration.

4, =d, +W, xOG+W, x (W, xOG)

2. Kinetics: Draw a free body diagram showing the applied forces and an equivalent
force diagram showing the vector ma or its components and the couple la.

arm

3. Mass properties: Recall geometric mass properties for a disc.




THEMATIC PROBLEM

2. Kinetics: Draw a free body diagram showing the applied forces and an equivalent
force diagram showing the vector ma or its components and the couple la.

I=1+1,

1 2 1 2
= EMRE I = ZMR-
f . | f .
V z U ox
Since the x and y axes are identical

o by symmetry, they must have
l = I, =—MR equal moments of inertia.

Rl+ Fa=0
ZlfzmxaG <<-Mg+N+R2=0
R3=-M@&°L

LR2=-1/ Mr?0

D Mg = Hg << -LR1=0
rrFa=0

Solution: R1=0; Fa=0; R3=-Mv?/L; R2=-1/4AMv?r/L?; N=Mg+1/2Mv?r/L?




Thematic exercise 15

Un unbalance axis may be approximated by

the sketch represented in the figure. Knowing 150 mm __
that the mass of each bar is equal to 0.3 [kg] F\Ttm\ 3
and the principal rod rotates at a instant speed € B | SRR

of 1200 [r.p.m], when a couple M of 6 [Nm] is
applied, determine the dynamic reactions at the
supports, neglecting the inertia of the principal
rod CD.

Equations to be solved:

> F=ma,

> M. =H¢
Angular momentum H: Maszs centre: 2 2
X B ZXiM Zy M, ZYiMi
I = IG + m_d 2 Xo Y: i:12 _25 [mm] y_ 12 _25 [mm] Z= I:12 :225 [mm]
1 e : M 2 2
_ 2 i=1 =1 i=1
e =35 . 'd\:/

5



Angular momentum H.:

Ix - ny - sz @y Ix - ny - sz
He=le@=|-P, I, =P, |elot=|-P, I -P,
- sz - sz Iz @, - sz - sz Iz

2
P, = Zmi *%; *2; =0.3*0*0.15+0.3*0.05*0.3 = 0.0045 kgm*

2
P, =Y m *y,*z, =0.3*0.05*0.15+0.3*0*0.3 = 0.00225 kgm’

i=1

Time derivative of H-:

\_ym

. . 2

_ -P,0, -P,o, -P,o, 0 -P,o, -P,o, +P,0,

I . . 2

H. =1-P,0, +Qx -P,0,y=y-P,0,1+1 0 ¢ x{-P,0,=1-P,0, - P,0,
|, @ l,0 |,



TEST EXERCISE - cont.

N

0 -mg] [0.05] (-mg 0 Ry, 0 —P,a, +P 0.
S Mg =He ©1005(x{ 0 b+ 0 tx{ 0 b+l 0 xRy t+1 01 =4=P o, + P,
015 | 0 0.30| | © 06/ [0 M |.a,
~0.6R,, (—0.0045¢, +0.00225*(125.66)| (R, =109.15[N]
—0.15mg —0.3mg +0.6R,, * =4 —0.00225¢, +0.0045*(125.66) b <> | Ro, =-36.1[N]
0.05mg +6 \ 0.002¢, | |a,=3075rad /7]

Kinematics of mass centre:

3 =4 +axCG+wx(WxCG )=

ag, 0) (0.025 0 (0 0.025) |
g, (=0+1 0 tx70.025¢+4 0 (x|{ 0 £x{0.025
0 a,] (0.225) |125.66] ||125.66] |0.225)

Kinetics of mass centre:
After mass centre determination, acceleration calculation and establishing force
equilibrium: .

RCX\ KRDXN ”ng“ ran\ KRCX - —3845 |iN
Zﬁ:maG <= A RCy>+<RDy>_< O >:2m%aGy><:><RCy:—155_3 N
N O J L O ) L O ) L O ) \O - O




“ e,
GYROSCOPE’S MOTION

When the motion of gyroscopes and other axisymmetrical

bodies are considered, the Eulerian angles ¢, 6, and w

are introduced to define the position of a gyroscope. The

time derivatives of these angles represent, respectively,

Y the rates of precession, nutation, and spin of the
gyroscope. The angular velocity o is expressed in terms
of these derivatives as

Z |9

®=-¢sin @i+ 0j + (w+ dcos Ok

The unit vectors are associated with the frame Oxyz
attached to the inner gimbal of the gyroscope (figure
to the right) and rotate, therefore, with the angular
velocity

Q=-¢sin Qi+ 9j + dcos Ok AL
¢ j+ ¢




0, GYROSCOPE’S MOTION 4 /®
Denoting by | the
moment of inertia of the
gyroscope with respect to
Its spin axis z and by I’ its
moment of inertia with
respect to a transverse axis
through O, we write:

Hy = -I'gsin @i+ '8 + I(yw + ¢ cos Ok
Substituting for Hgand {2 = -¢.Sin 01+ 9] + ¢.COS OK into
Z“I\/IO = (HO )Oxyz +Q X HO

leads to the differential equations defining the motion of the gyroscope.



GYROSCOPE’'S MOTION

In the particular case of the steady precession of a
gyroscope, the angle @, the rate of precession ¢,
and the rate of spin y remain constant. Such
motion is possible only if the moments of the
external forces about O satisfy the relation

Z

>M, = (lo, - I'¢cos @) ¢sin 0]

l.e., If the external forces reduce to a couple
of moment equal to the right-hand member
of the equation above and applied about an
axis perpendicular to the precession axis
and to the spin axis.



PROBLEM 18.147

A homogeneous disk of mass m = 5 kg

rotates at a constant rate @, = 8 rad/s

with respect to the bent axle ABC, which

itself rotates at the constant rate @, = 3
B rad/s about the y axis.

400 mm x\x .
Determine the angular momentum H of

300 mm the disk about 1ts center C.

r=250 mm

1. Determine the angular velocity w of the body: w is the angular velocity of the
body with respect to a fixed frame of reference. The vector w may be resolved into
components along the rotating axes. The angular velocity is often obtained by adding
two components of angular velocities w, and w,.

O=0,+0, ; ®, = 8 k rad/s; ®, = 3] rad/s
e 3 J+ 8k rad/s
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2. Determine the angular momentum of
the body: If the principal axes of inertia
X’,y’, 2’ of the body at G (mass center)
are known, the components of the angular
momentum Hg are given by:

( HG )x X Wy
( HG )y 1y a)y
( HG )z Iz Wy

r =250 mm where I, I, and 1,, are the principal
moments of inertia, and Wy, @, and @,
are the components of the angular
velocity of the body.

(He)e = 1 @ (He)y =1y o (He)y =
_ l _— l ,
| =l =Zm L, =5mr

Angular momentum about C :

198



® =3 ]+ 8k rad/s

E(,:ry,:%mrz

_—l )
I,—2mr

yA

r=250 mm

(He )y = l. @, =0
(He)y =1, 0, = %5 (0.25)>3 =0.234 kgm?/s
(He), =1y @, =5 5(0.25)°8 =1.25 kym?/s

H.=0234)+1.25k kgm?/s



{‘ PROBLEM 18.148

B Two L-shaped arms, each weighing 5 Ib, are
welded to the one-third points of the 24-in.
shaft AB. Knowing that shaft AB rotates at
the constant rate w = 180 rpm, determine:

(a)the angular momentum H, of the body
about A;

(b) the angle that H4; forms with the shaft.

1. Determine the angular velocity w of the body : w is the angular velocity of
the body with respect to a fixed frame of reference. The vector w may be
resolved into components along the rotating axes.

@ = 180 rpm = 18.85 rad/s

o = 18.85 k rad/s



PROBLEM 18.148 - SOLUTION

2. Determine the mass moments and products
of inertia of the body: For a three dimensional
body these are the quantities I,, 1, 1., I, 1,,, and
l,,, where xyz is the rotating frame If the

rotating

frame is centered at G (mass center) and is in the
direction of the principal axes of inertia
(Gx’y’z’), then the products of inertia are zero

and I, I, and 1, are the principal centroidal
Defining: moments of inertia.
L=2f d=S8ft m= 22 slu
12 12 322 >9

,=2[l,0f @ +1,0f @]
|z:2{1 mL>+m[L%+(05L)7 ]+ m|_2+m(05|_) }

@2 0.1456 Ib - ft - s° -



PROBLEM 18.148 - SOLUTION
=[l,of ® +1,0f @ +1,0f @ +1,0f@D ]
=[m(-L)(-2d) + m (-0.5L)(-2d) + m (0.5 L)(-d) + m ( L )(-d) ]
l,,=15mLd=0.0582 Ib-ft- s
vz = [Iyz of D+ l,, of @]
;2 = [m(0.5L)(-2d) + m(0.5 L)(-d)] =-1.5m L d =-0.0582 Ib - ft - °

3. Determine the anqgular momentum of the body: The angular momentum H, of a
rigid body about point A can be expressed in terms of the components of its angular
velocity w and its moments and products of inertia.

(Ha) =+l o~ Ly o, - L,

(—A)y_ Iyxa)_l_la)'I W,

(Ha),=-lyo0-1y 0+ |, o,
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PROBLEM 18.148 - SOLUTION
9 lm/ o @, =18.85 rad/s
' | ,=0.1456 Ib-ft s

@°n l,,=0.0582 Ib - fts?
\L l,,=-0.0582 Ib-ft- s’

S
oo

(a) Angular momentum about A:
(Hy),= -1,®=-(0.0582)(18.85)=-1.098 Ib-ft s
(Ha)y=-1,o,=-(-0.0582)(18.85)=1.098 Ib-ft-s

(H,),=+1 o=+ (0.1456)(18.85) = 2.744 Ib-ft s

Hy=-1.098i+1.098j+274k b ft s



/T/ @PROBLEM 18.148 - SOLUTION

9y @ @

(b) = The angle H, forms with the shaft:

H,=-1.098i+1.098j+2744Kk Ib-ft-s

H, =4/ (-1.098)2+(1.098) 2+ (2.74)2 =3.153 Ib - ft-s
H, -k=H,cos{
2.744 = 3.153 cos 6 0=29.5



PROBLEM 18.153- Thematic exercise 16

75 mm~ The sheet-metal component shown is of
g y uniform thickness and has a mass of 600 g. It
Is attached to a light axle supported by bearings
at A and B located 150 mm apart. The
component is at rest when it is subjected to a
couple M, = (149.5 mN-m ) k. Determine the
dynamic reactions at A and B:

(a) immediately after the couple is applied,

(b) 0.6 [s] later.

75 mm

1. Determine the mass moments and products of inertia of the body: For a three
dimensional body these are the quantities I, I, I,, l,,, l,,, and I ,, where xyz is the
rotating frame. If the rotating frame is centered at G (mass center) and is in the
direction of the principal axes of inertia (Gx’y’z’), then the products of inertia are
zero and 1, I, and I,, are the principal centroidal moments of inertia.




_+ PROBLEM 18.153 - solution

Moments and products of inertia :

Set: b=0.075m, m=0.6kg

By symmetry :

IZ,IXZ,IXZOf®=IZ,IXZ,Ixzof®
Y

,=2[lL,of @]+1,0f ®

L =2{[75 2071+ D[0P+ (Y1} +5(5m)(2b)
|, = iémb



4 PROBLEM 18.153 - solution

l,of @ =0
For the whole body :

XZ:2[IXZOf®]
e =2[0+ T (b)(- )]

B 1
- 18

m b*

l,, of ® =0 For the whole body :

-2[Iyzof@]

w2203 B0 1+ 1 D
| —-%mb

yZ



PROBLEM 18.153 - solution

2. Determine the anqular velocity w of

the body and the anqular velocity Q2 of

the rotating axes. Q

body, Q = .

y
o=wk
Q =o

the rotating frame: o is the angular
velocity of the body with respect to a
fixed frame of reference.
may be resolved into components along
Is the angular
velocity of the rotating frame.
rotating frame is rigidly attached to the

The vector ®
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smm” T PROBLEM 18.153 - solution

3. Determine the angular momentum of
the body:

The angular momentum Hg of a rigid body
about point G can be expressed in terms of
the components of its angular velocity w
and its moments and products of inertia.

o —Py -P_|(0] [-P,w

XX

75mm HG: Iyy _Pyz <O>=<—PyZW
I, W \lZZWJ

V-

Angular momentum abouE[LG : , Recall:l
(Hg ) =-lg @, =- 18 M b*w | 1,,= Embz If%mb2 Iyz=-%mb2
— _ 1 2

(HG)zzlzwz:%mbzw HG:3—16mb2a)(-2i+j+22k)



PROBLEM 18.153 - solution

4. Compute the rate of change of anqular momentum : The rate of change of Hg
with respect to a fixed frame is given by

=(HG)Oxyz-I_gIXHG

where ( i—lG )oxy: 1S the rate of change of Hg with respect to the rotating frame, and
Q is the angular velocity of the rotating frame. If the rotating frame is rigidly
attached to the body, Q is equal to w, the angular velocity of the body.

:(HG)oxyz+QXHG

(P W) (0] [~Pow] [—P,Ww+P,w]
He ={-PW!+{0txd—P wh={-P W—Pw’
W (w) W |, W

'S

Immedlately after the couple IS applled Q=0

Hg = 36mlo a(-2i+j+22k)



PROBLEM 18.153 - solution

5. Draw the free-body-diagram equation: The diagram shows that the system of
the external forces exerted on the body Is equivalent to the vector ma applied at G
and the couple vector H.

6. Write equations of motion: Six independent scalar equations can be written
from

2 F=ma, EMGzHG



PROBLEM 18.153 - solution

m =0.6 kg, b =0.075 m, & = 24 rad/s

Equating moments aboutB: X Mg = HB

BAX§A+B(§><I5+M =I:IB

(0 )
<0

> X <

0.15

™

A,

\

-+ 9

O)

(0 )
0

0.075!

- O 3

\ O J

0
0

0.0495|

N

—2x1/36mb" W]
1/36mb "W

V.

22x1/36mb" W

N

N

(A, =29.73[N]
A =0.015[N]

i =24 [rad /5?]
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M, = 0.0495 k N.m Ho =3¢ mb*ar (= 2i+j +22Kk)

Equating forces: 2 F =ma
A +B, =mx0 B, =—0.015[N]
A, +B,—mg=mx0"" |B, =-23.844[N]

(a) Dynamic reactions at A and B :

A=0015i+003j N B=-0015i-0.03j N



/ 3RC)BLEM 18.153 - solution
(b) 0.6 s after the couple is applied :

o = 24 rad/s® (constant)
w=241=24(0.6) =14.4 rad/s

o=wk=14.4k rad/s

Compute the rate of change of anqular
momentum.

Hg = mbiw(-2i+j+22Kk)

36

Hg 36mb a(-2i+j+22Kk)
+(a)k)x(i mbw (-2i+j+22K)

Hg = 36mb [(- 2 - a))|+(a 2a))j+22ak]
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My=0.0495k Nm  Hg =

Write equations of motion. Moments about B :

> Mg = Hg
y Component ( + T ): A(0.15) =

x Component (+—) : -A(0.15) =

PROBLEM 18.153 - solut]

M b°[(-2- @ )i+(-2)j+22 K]

m=0.6 kg, b=0.075m,
a =24 rad/s’>, = 14.4 rad/s

mbz(a 20?), A =-0.244N

mb2( 2a-0?), A, =0.1596 N
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Write equations of motion. Equating forces : > F =ma

A,=-0.244N, A =0.1596 N

x Component (+ —): A +B, =0 B,=0.244 N
y Component ( + T ): A+B,=0 B, =-0.159% N
Dynamic reactions at A and B after 0.6 s :

A=-0.244i+0.1596j N B=0.244i-0.159j N



PROBLEM 18.157

A 2-kg disk of 150-mm diameter is attached
to the end of a rod AB of negligible mass
which is supported by a ball-and-socket joint
at A. If the disk is observed to process about
the vertical in the sense indicated at a
constant rate of 36 rpm, determine the rate
of spin y of the disk about AB.

1. Determine the angular velocity w of the body and the angular velocity W of the
rotating frame: o is the angular velocity of the body with respect to a fixed frame
of reference. The vector @ may be resolved into components along the rotating axes.
The angular velocity is often obtained by adding two components of angular
velocities o, and w,. Q is the angular velocity of the rotating frame. If the rotating
frame is rigidly attached to the body, Q = ® .




PROBLEM 18.157 - solution

Determine the angular velocity w of the body.

d K

w K ¢=-36rpm =-3.770 rad/s

x L ®=-¢sindi+ (+ ¢cosd) kK
i Determine the angular velocity W of the rotating
| frame.

Q = -¢sinfi + gcosok

2. Determine the mass moments and products of inertia of the body: For a three
dimensional body these are the quantities 1, 1, I,, l,,, l,,, and 1,,, where xyz is the
rotating frame. If the rotating frame is centered at G (mass center) and is in the
direction of the principal axes of inertia (Gx’y’z’), then the products of inertia are

zero and I, 1, and 1., are the principal centroidal moments of inertia.




PROBLEM 18.157 — solution

A \A Determine the mass moments of inertia.
600 mm 1
>y L=y mr2+mL?

~ 1 2 2 _ ‘
- L= 4 2(0.075)*+2(0.6)*=0.7228 kg-m
? .
< =i ,=3mr2=22(0.075)?=0.005625 kg m’
6= 30°
L =600 mm

3. Determine the angular momentum of the body: The angular momentum H of
a rigid body about point A can be expressed in terms of the components of its
angular velocity w and its moments and products of inertia.

(HA)x: + Ix @y - Ixy @, - Ixz @,

(H)y yx @ Ia)—l @,

(HA)z:'sz a)x'lzya)y_l_lz @,



VA
Z » PROBLEM 18.157 — solution

3. Determine the anqular momentum of the body.
®=-¢sindi+( y+ $cosd) k

Angular momentum about A :

Hy =L o1+ 1,0k

> Hy=-1 gsin@i+ 1, (w+ ¢gcosd) k

4. Compute the rate of change of angular momentum.

Q = -¢sinfi+ ¢cosé Kk
Ha = (Hp Yonz + Q@ X Hy (Hp)oxyz =0, since = constant
i J | k
Hy= Q xH, = -¢sind 0 $Cos6
-1, #sin@ 0O |, (y+ gcosh)

H, = ¢sin@[ |, (v + ¢cosd) - 1. ¢cos] |



PROBLEM 18.157 — solution

5. Draw the free-body-diagram: The diagram shows the system of the external
forces exerted on the body.

w K Note:
The y axis and A, are in
/ L a direction perpendicular
X (out) to the plane of the

>/ figure.

6. Write equation of motion: For a body rotating about point A :




PROBLEM 18.157 — solution

Write equation of motion.

Recall:
L HAziﬁsinH[lz(zjy+¢cos@)-Ix¢cose]j
>/ Sum of moments about A :
W=mg >M,=H,:

-Lk)x(-mgK)=gsind[ L, (y+ ¢cosd) -1, ¢cosd] ]

-mg Lsin@j = gsin@[ |, (v + ¢cosd) - 1, gcosé] j

L -1, . mg

W = ] ¢ Cc0oSO - L&




PROBLEM 18.157 — solution

0= 130° IX =0.7228 kg m2
L = 600 mm |, =0.005625 kg-m?
$=-3.77 radls
> m =2 kg
, L -1, . mg
= COS& - :
A ., ¢

. 0.7228 - 0.005625 (2)(9.81)(0.6)
= - 3.77 ) cos 30° -
d 0.005625 (-3.17) 0.005625 (- 3.77)

w =138.9 rad/s



TEST EXERCISE - Thematic exercise 17

Problem:

The extreme point of a uniform bar AB, with a
mass of 8 [kg] is connected to a slide vertical
frictionless and massless cursor.

The other extreme point is connected to a vertical
cable BC.

If the bar is released from rest, for the position
shown, determine:

a) The angular acceleration of the bar;

b)The dynamic instant reaction.

Solution: By Newton’s second law
> F=mid,
SN < i,

Angular momentum determination:

0 0 0 0 0
He “[ieJwi=|o Lme 0 {0_}— 0

System S1

0 0 — mL? 12
(capo | - 2™ | 224




TEST EXERCISE - solution

Time derivative of momentum determination (Dynamic momentum):

_ 0 0 0 0 0 0
I__iG = 0 + QSystem s1 X 0 = 0 +1 0 px 0 - 0
st L ey Loee| “Lrmed| |-6) |-imes| |- Lmee
12 12 12 12 12
Cinematic analysis: Mass center acceleration
§G=§A+VV><AG+VV><(VV><,§G) . _ ) .
L/gﬁ L/ZE
ag, 0 0 % 0 0 %
dg =qdg, (=18u +9 0 X9 L/ZE +3 0 tx[{ 0 pxA L/ZE :
0 0 -0 0 -0 -0 0
6"L/2% +9|_/2% 9'|_/2%—92 |_/2§ 6?'L/2%
0 0
g =1, +<_é|_/2§>+ 0 x<—9L/2§$=%aAy —éL/Z?—éz L/2%>:<aAy —9L/2§$
0 0 -0 0 0 0




TEST EXERCISE - solution

Cinematic analysis: Mass center acceleration
ag =4, +VV><AB+VV><(VVXAB)

Second equation leads to:

0=a, -

Agy =\ aa

L3 L3
ag, 0 0 2 0 0 2
g, (=4t 0 +x L% +< 0 x|< 0 px L%
0 0 -0 0 -0 -0 0
il cal] | alogB
a, 0 2 0 2 2 2
BROH R RO R
2 . 2 2 2
0 0 0 -0 0
.. /3 .. /3
0 £:> A, = 6?L£
2 2
Substitution in to [irevious eq : tion : .
OL/2=-0* /2= dL/2=
/ 2 / 2 / 2
y—éL/zﬁ—é2 L/21>:<9‘L§—9’L/2£
g 2 2 0 2

1
oL/2—
/ 2
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< 9

TEST EXERCISE - solution

RA=mdL/
—FBC +mg :mél-*@%

ral & —FBC(L*/g/jz—imLzé
4 4 12

2 B 2
éL__gL\/g/_i_éE:_ing
| 16 47 16

12

RA=m*98¥3. L
8L

— =25.46|N
- 25.46[N]

FBC =...
0= %f =16.97|rad / s2]
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EXERCISE 16.119

e The 300 [mm] uniform rod BD of
mass 3 [kg] is connected, as shown,
to crank AB and to a collar D of
negligible mass, which can slide
freely along a horizontal rod.
Knowing that crank AB rotates
counter clockwise at the constant
rate of 300[rpm], determine the
dynamic reaction at support D, when
0=00. A




EXERCISE 16.119 - NUMERICAL SOLUTION

=Y Force of PilZ00m in

[mis™2)




ENERGY METHODS

The principle of work and energy for a rigid body is expressed in the form

T +U =T,

where T, and T, represent the initial and final values of the kinetic energy of the rigid
body and U,_, , the work of the external forces acting on the rigid body.

The work of a force F applied at a point A is: } £ -
” e —
U, ., = I (Fcosa)ds v
S1 dw = F edr = F.Cosa.ds

where F is the magnitude of the force, o the angle it forms with the direction of
motion of A, and s the variable of integration measuring the distance travelled by A
along its path.



WORK OF A COUPLE

The work of a couple of moment M applied to a rigid body during a rotation in 6
of the rigid body is:

0,
0,

The kinetic energy of a rigid body in plane motion is calculated according to the
3rd Koenig theorem:

_ 1 =95 ,17 0
T—va +2Ioa

where v is the velocity of the mass centre G of the body, w
the angular velocity of the body, and 1 its moment of inertia

about an axis through G perpendicular to the plane of
reference.
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KINETIC ENERGY

T= % mv 2 +% |2
The kinetic energy of a rigid body in plane motion may be
separated into two parts: (1) the Kinetic energy L mv2
associated with the motion of the mass center G of tﬁe body,
and (2) the kinetic energy - [w? associated with the rotation
of the body about G.

For a rigid body rotating about a fixed axis through O with
an angular velocity w,

_ 1 2
=5 oo

where 15 is the moment of inertia of the body about the
considered fixed axis.

232



KINETIC ENERGY - PLANE MOTION

\elocity of a generic point of the body
Vp =V + WxGP

Kinetic energy of the body

A 4

Special case: Body movement about a fixed point:

_1
~2

Ec [IO]W2



PRINCIPLE OF ENERGY CONSERVATION

When a rigid body, or a system of rigid bodies, moves under the action of

conservative forces, the principle of work and energy may be expressed in the
form

T, +U,_.,=T, ® T,+V,=T,+V,

which is referred to as the principle of conservation of energy. This principle

may be used to solve problems involving conservative forces such as the force of
gravity or the force exerted by a spring.

The Work of a conservative force is numerically equal to minus the potential
variation associated to the force. The work is independent of the way of the force

application point. dW . —dU

oo »With E; =mgh,  Gravitational force

Examples: W2=E _E
1 pl

. 1
W =E, - E,, ,with E, = 5 KX’  Elastic force

W? =E,-E, ,with E_ = L2 Inertia force

2



THEMATIC EXERCISE - 18

\‘n

The gear chain A has a mass of 10 (kg), a

gyration radius of 200 [mm] and a primitive

radius of 250 [mm].

’ The gear B has a mass of 3 [kg], a gyration radius

O AT of 80 [mm] and a primitive radius of 100 [mm].
The system is at rest when a couple M equal to 6

[Nm] is applied to gear B. Neglecting the friction,

determine:

a) The number of revolutions till it’s velocity has

achieved 600 [r.p.m.];

b) The average tangential force that B exerts on

| gear A.
a) Applying the principle of work and energy to the gear chain (A+B):
Tl + Ul2 — T2 < 0+ Ul2 — (TZA + TZB) I\R/I(:)Crilelr;t of inertia of a

ring about
perpendicular axis

T, =%|£(WA)2 =%(m’*(|<’*)2)(w’*)2 =%(10><o,22)(w‘\)2 (1=MR?).

2 2
T :%Ig(wa)z :%(mB(KB)ZIesooxzﬁj :%(3x0,082{600><27[)

60 60
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THEMATIC EXERCISE

A kinematics approach:

VA=V ©wAx025=wB x01< wA=04w8

The impulse enerqy:
U7 = MAG = 6AH

So: AQ =27,37(rad) = 4,356 (revolution s)

(25.1)

The principle of work and energy applied to the gear A:

T+U/ =T, < 0+U/ =T F ><O,25><A,6'=%O,4

The hypothesis of no slipping:

AS* =AS® < r*AB=r°A0 < AB =10,95(rad)

Solution: F=46(N)



44, 60

EXERCISE 17.10

A rotating body is breaking by means
of a geometric defined arm, as
represented In the figure.
The rotating element has a radius of
254 [mm], and a inertial moment of
18,3 [kgm?]. Knowing that the initial
angular velocity is equal to 180 [rpm],
anticlockwise, determine the force that
must be applied by the hydraulic jack
to stop the system after 50 revolutions.
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VIBRATIONS

Vibrations are consequence of particular processes, where
dynamic forces excite the structures or elements.

In machines, cars and buildings, those effects may lead to a
decreasing in efficiency, bad function, lose of control and severe
irreversible problems.

Vibrations and noise are related. The noise Is part of vibrational
energy transformed on to air pressure variation.

The major problems in vibration occur by resonance
phenomenon. This problem may occur when the dynamic forces
excite the natural frequencies or modes of vibration in the
neighbourhood of the structural element.

Modes and natural frequencies are characteristics from the
geometric body.
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VIBRATIONS - (UN) HELPFUL CASES

Useful Vibration

Vibration In Everyday Life




PROBLEM DETECTION IN VIBRATIONS

{\r Acc

Spectrum
Analysis

During  tests, the results
observation in time domain does
not give so much useful
information, however, if that
information is treated in the
frequency domain, may help to
identify the energy concentration
for some specific frequencies.

From kinematics analysis, the
mechanical engineer may identify
the mechanical element with its
different  natural  frequencies,
identifying the problem source.
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MATHEMATICAL MODEL

n A
o DR

=
IM““

Mathematical models may be useful to simulate the behaviour of the
element, when submitted to exterior actions and modifications to
dynamic characteristics, promoted by geometric changes.



EXPERIMENTAL MODEL (Univ. Southern California)

e Building Details
— 48 inches high, 4 floors, 60 Ibs

— Floors =1/2 x 12 x 18 aluminum
plates

— steel 1/2 x 1/8 inch steel columns
— 5.5 Ib/inch spring braces

— 4 actuators on the top floor

— 8 motes, 2/floor

— dual axis, 200Hz, 2 starGates

e 4 Test Cases
— Case 1: braces from floor 4 removed
— Case 2: braces from floor 3 removed
— Case 3: braces from floor 2 removed

— Case 4: braces from floor 2 and 4
removed




EXPERIMENTAL MODEL (Univ. Southern California)

« Stiffness reduction due to the removal of bracing systems to the frame structure.

80 T . T
1 ] SRR T St s O S e R P L B L1y T S T R e O AR Oy -

Case 1 Case 2

4 feoorscanenedionsommmy casseierirennne r ............ B AR e ,I..
0 ___I m__ 1 __ .h.a_ .,1:4I

qal1-25;9 4 1273 % 329§ g 1234
Case 1 Case 2 Case 3 Case 4

Case 3 Case 4
243

%age Loss of Stiffness
w S o
(=] o

n
[=]




Cap.8

CASE STUDY

Problem: The portal frame presented in
the picture, presents a vibration problem,
when moving the load. The maintenance
could stop and verify the source of the
problem, or let go on till collapse. This
dilemma and also the uncertain
questions, if the force level generated by
the gear motor was very high or if those
level forces were amplified by resonance
of the gear motor structure, let the
engineer think about the problem and try
to do a diagnostic.

Analysis: An experimental measurement
(accelerometer) produces a spectrum like
In the picture.

Solution: A piece of the gear train was
collapsed and produce instability on the
rotation procedure.
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PERIODIC PHENOMENON

+ X = Amplitude
Characteristics:

T = period

f = frequency = 1/T (Hz)
(—time W =angular frequency = 2xf

¢= phase

T

Answer in time domain: x = X sin(wt + ¢ )

Answer in frequency domain:
F(t) = X, + X sin(wt + ¢, ) + X, sin(w,t + ¢, ) +...+X_sin(w t+ ¢, )

p Any periodic function may be
A Vs - -
Amplitude X 9 - approxma_ted by a summation
MJ I‘é of harmonic functions.
! >

T, UT, T, Frequency (Hz)




SIGNALS AND HARMONICS

« The motion of a mechanical
system can consist of a single
component at a single frequency
or it can consist of several
components occurring at different
frequencies simultaneously, as for
example with the piston motion of
an internal combustion engine.

Deterministic Signals

Amplitude

Amplitude

fo 2f, 3f, 4f, 5f, Frt;quency

Harmonics Deterministic Signals and Harmonics
Generator A /\
L f\.f'-'.'\ + 8 W AAVLY ‘ > \/\/ \A/ Time I.
' G el | Time f, 2f, Frequency
A
fg 3fI 5f1 Frequency /\ >
\/ \./ Time >
fl Frequency
A
Y A I AMNNAN
/| Time ARV R -
I I l Time | 5

2fl Frequency
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SIMPLEST FORM OF VIBRATION SYSTEM

Once a (theoretical) system of a mass and a spring is set in motion it
will continue this motion with constant frequency and amplitude. The
system is said to oscillate with a sinusoidal waveform.

Displacement

DWW\/ ‘ |

«—T—*
Period, T, in [sec]

d =D sine,t Displacement

Frequenc;'

"y

“ \/L
VW\A V

= k
Frequency, f = Ti in [Hz = 1/sec]

(k
o=2xnf =,—
m

Mass and Spring

w, =2nf, = ’mfm
1

Increasing mass
reduces frequency
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MECHANICAL DISCRETE SYSTEMS

F sprin F sprin
Pring hring A spring Mechanical Parameters and Components
Displacement Velocity Acceleration
= ‘o T
X1 > |
X2-X1 = =
X2
. i A\F damp
F damping F damping
——> | Mass, Spring and Damper
v e X2-X1 .
X1 X2 o
\ R :
N A A A
T I T 1 \ h f.’
1‘ 'l' ;U‘ :f v{; U \/ \/ \/ \/’ time
vt l | A,
‘\F mass Vv ‘
m

Increasing damping
reduces the amplitude

A 4

‘ ‘ > F mass
(1)
X2
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MECHANICAL VIBRATIONS

Consider the free vibration of a particle, i.e.,
the motion of a particle P subjected to a
restoring force proportional to the displacement
of the particle - such as the force exerted by a
spring.

If the displacement x of the particle P is
measured from its equilibrium position O, the
resultant F of the forces acting on P (including
its weight) has a magnitude kx and is directed
toward O.

Applying Newton’s second law (F = ma) with
a = X, the differential equation of motion is:

______ 1 mix + kx =0

+X o - IE ........... ! Recall statics and dynamics:
_____ F=0 Z ﬁ:m&
+ | Y. F=0
mg-kd,.s=0 MQ-K(8ese +X)=mx



MECHANICAL VIBRATIONS

mx + kx =0

setting ®,> = k/m

X+ m?Xx=0
The motion defined by this expression is called
simple harmonic motion.

The solution of this equation, which represents the
displacement of the particle P is expressed as:

X =Xy, SIN (ot + @)

L) GRS EN !
b : Where: x., = amplitude of the vibration
+ w,, =/k/m = natural circular frequency

¢ = phase angle



Equilibrium

Y. .o

+Xm |-
-+

<

MECHANICAL VIBRATIONS

B
P s
SR T

i

»
A
%;'t ;
el

Recallinq:“
X+ mX=0
X = X, SIN (o, + ¢)

The period of the vibration (i.e., the time
required for a full cycle) and its frequency (i.e.,
the number of cycles per second) are expressed
as:

Period =T, =2
(Dn
1 o
Frequency = f, =7 =7

The velocity and acceleration of the particle are
obtained by differentiating X, and their
maximum values are:

Vm = Xmﬁ)n am = menz
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OSCILLATORY MOTION

The oscillatory motion of the particle
P may be represented by the
projection on the x axis of the motion
of a point Q describing an auxiliary
circle of radius x,, with the constant
angular velocity o,,.

The instantaneous values of the
velocity and acceleration of P may
then be obtained by projecting on the
X axis the wvectors v, and a,
representing, respectively, the velocity
and acceleration of Q.
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SIMPLE PENDULUM

While the motion of a simple pendulum is not truly a
simple harmonic motion, the formulas given above may
be used with ®, 2 = g/L to calculate the period and
frequency of the small oscillations of a simple
pendulum.

The free vibrations of a rigid body may be analyzed by choosing an appropriate
variable, such as a distance x or an angle @, to define the position of the body,
drawing a diagram expressing the equivalence of the external and effective forces,
and writing an equation relating the selected variable and its second derivative. If
the equation obtained is of the form

X+0,2X=0 o O+»720=0

the vibration considered is a simple harmonic motion and its period and frequency
may be obtained.



FORCED VIBRATION WITH A SINGLE D.O.F.

» Single Degree of Freedom System - Heavy Duty Vehicle Suspended Seats
(construction and agricul}uLaI vehicles, buses)

Acceptable motion transmitte

NN
ensor
\/S
\~ Seat = " |Controllgr
e D)
Spring « ;> Controllable shock absorber
<
SN

/V\f %\ dinout Off-state On-State
oad 1hpu Random Ordered

pattern pattern
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FORCED VIBRATION

The forced vibration of a mechanical system occurs

when the system is subjected to a periodic force or when

It is elastically connected to a support which has an

alternating motion. The differential

equation describing .

each system is O /

Eresented ot =0 _
elow.

a
@x = ko, sin oy t Equilibrium

O SIN o5t

Equilibrium |

P =P, sin ot




Equilibrium4

P=P,sin ot

FORCED VIBRATION

mX + kx = P, sin o; t

mX + kX = KJ,, SIn ot

The solution of these
equations is obtained by
adding a particular
solution of the form:

Xpart = X SIN 0 €

to the general solution.

O SIN ¢ t

T T SITE
Helet

-----

Equilibrium

@

ot =

O (th

*The general solution of the corresponding homogeneous equation represents a

transient free vibration which may generally be neglected.
*The particular solution represents the steady-state vibration of the system.
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P:PmSinOth

Equilibrium

EYE

MAGNIFICATION FACTOR

mx + kx = P - SIN o 1 mx + kx = ko, SIn o t

-Substituting X, X par ¥pare INtO €aCh Of the differential equation,
and recalling the definition of natural frequency (k/m=w,,2).
-Dividing the amplitude x., of the steady-state vibration by P, /k in
the case of a periodic force, or by 5, in the case of an oscillating
support, the magnification factor of the vityation Is defined by:

A
Xm
X :Xm _ 1 %m/k

Pm/k 5m 1_(wf jz .1 R W,
O, Sin s 1 W, F‘ "

s 1
f The amplitude x., of the forced vibration becomes infinite
when o; = o, , i.e., when the forced frequency is equal to the
natural frequency of the system. The impressed force or
Impressed support movement is then said to be in resonance
with the system. Actually the amplitude of the vibration
remains finite, due to damping forces.
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RESONANCE VIBRATIONS

Swinging a child in a playground is an easy job because
you are helped by its natural frequency.

With a tiny push on the swing each time it comes back to
you, you can continue to build up the amplitude of swing.

If someone try to force it to swing a twice that frequency, it

will find it very difficult. wode
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RESONANCE VIBRATIONS

Old story: “Napolean army cross bridge with
organized step, being this step frequency
equal to the bridge natural frequency,
increasing the amplitude of vibration,
producing collapse.

Real Story: Tacoma, USA, November, the 7th
of 1940. The wind movement excite bridge
natural frequencies (first the longitudinal
modes and then the torsional modes, most
critical).

Real Story: Pingo Doce supermarket,
Braganca, Portugal, 9-11-2010. The wind
speed excite natural frequency (torsional
mode).

'

)

o r e
B

9-11-2010, Braganca, Portugal
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FREE VIBRATIONS WITH DAMPING

Academic example: Mass, spring and shock absorber system in a horizontal plane,
with one degree of freedom.

Y F=mX o KX -CX =mX

Movement equation:

mX + CX + KX =0

Possible solution:

X = AeSt A — constant to be determined
S — Characteristic of the present system



SOLUTION VERIFICATION

’ X = Ae®
% X = A(s)e®
X = A(s*)e*

Being a solution, the movement equation should be verified.
mA(s’)e™ + CA(s)e”™ + KAe™ =0

Any solution Ae* = 0 different from zero, leads to:

ms’+Cs+ K =0

Second order polynomial, may produce two independent solutions:

s, —C \/(CJZ_K X, = Ae™

——— 4+ | =] ——
s, 2m 2m/  m X, = AzeSZt
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SOLUTION VERIFICATION

Any combination of those two solutions, may be considered also a solution

X (t) = Ae™ + Ae*

Notes:
1- The constants A, and A, may be calculated as a function of the initial conditions.

2- The characteristics S, and S, are function of the body geometry .

Solution Analysis: Characteristics of S; and S,

2
(3) _K >0 Real solutions, non oscillatory behaviour
2m m
C) K . . .
(2—j _—=0 Double real solutions, non oscillatory behaviour
m m
c) K _ _ .
om) T S 0 Complex solutions, oscillatory behaviour



DAMPING TYPE

WA T~ 1

((:Critim)2 — E =
2m m

CCr|’tico

Damping type

K
CCritico = 2m\/% <~ CCritico - 2m(Wn)

Damping type Characteristics Answer
X(t) = Ae™ + Ae™
(e c - W =M=,
Damping coefficient p—? = = A AR L A, gy
s_—c [ . ’ "W' A+A2 cos(Wit) +1 A — A ) sin(,t)
Under 5 2m 2”’ T Py 1 K] [2”’ [ . ( ) ]
damping - w+m Xt ’/-\
il P i O
Natural frequency W, = Lﬂ,fl -ﬁ'*] \__/ b T o o
Critical
damping
X(t)=Ae" + Ae™
(& ("WW.{) (—W—W,)
Damping coefficient §= . QJ_K = Ae "+ Ae .
= — =B
Bree | s f (&)X pwe (=] = (4 + A)ch(W,2) + (4 — 4,)sh( 1) |
. ?
damping
=-gwrw.[5 -1
Natural frequency , = #{1- &) | =
time

three different cases of
damping, namely,

(1) heavy damping,
when ¢ > c,,
(2) critical damping,
when ¢ = c,

(3) light damping, when
Cc <C..

In the first two cases, the
system when disturbed
tends to return to its
equilibrium position
without oscillation. In
the third case, the
motion is vibratory with
diminishing amplitude.
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DAMPING

The equation of motion describing the damped free vibrations of a system with
viscous damping is

mx+cx+kx=0

where c is a constant called the coeficient of viscous damping. Defining the critical
damping coefficient c. as

1k
C. =2m - = 2Mo,

where o, is the natural frequency of the system in the absence of damping, we
distinguish three different cases of damping, namely:

(1)heavy damping, when ¢ > c_,
(2)critical damping, when ¢ = c,,
(3)light damping, when ¢ < c...



FREE VIBRATIONS WITH DAMPING - EXERCISE

r‘““n

Mass= 1[kg]
Spring constant = 1 [N/m]
Damping coefficient = variable, from 0.02, 0.2, 2, 20

==C=0.02 [Ns/m] «==C=0.2[Ns/m] ==C=2.0[Ns/m] ==C=20.0[Ns/m]

3,8 B A Sy /\

36 TNt ~1] R A R B TSR b SR
— 3,4 1\ - - = - - N S U S N
E ]

X 3,2 -

2 |

2 3 |

(] |

8 28 1 S [N RSO S SR -1

4

0 26 e l o R At S S
M ........ B VAV VAV 1A

_______________________________________________________

0 10 20 30 40 50
Tempo [s]



THEMATIC EXERCISE 19 - FUNDAMENTALS OF

MECHANICAL VIBRATIONS
~ 3L/4=1.95
Lia | L 50(N) The beam shown in the left figure has a mass

P of 31 [kg] and a length of 2.6 [m].

. . A force of 50 [N] is static applied at point “P”
and remove after. The oscillations of that point
“P” were observed in a spectral analyser, being
possible to represent the acceleration.

Use the data on graph to determine the spring
\" "/ \_/ constant and the damping coefficient.

b
-

>
\
S

WN P
14
\

0.05 0.10 0.15 0.20

Static analysis:

IRCy 50
— C
Lo RCx=0 D AT o T —
ZF:O 2 RCx fp
_ <9 RCy_mg_50+k5est:O <:><Rcy:_mg mg
ZMG:O | | | 3 F spring
——RCy-—50+-kd,, =0 |5 _50 mg
. 4 2 2 STk 3k



EXERCISE - solution

Kinematic analysis: Determination of the mass centre acceleration and the
relationship between two distinct points A and P.

. =, +WxOG +Wx(Wx G )
0] (0] (1/4) (o) [[o] (4] [-64/4
=303+406x{ 0 p+400x|[<0txd 0 +[=4 61/4
o ) [0] (9] ||¢) |O 0

.« J < J ) . J < J

N
Vo

Cap 8 267



EXERCISE - solution

Dynamic analysis: Newton’s second law.

{Zﬁmé (RCx:m(—é?z I/4)

~ . < —RCy—mg +c>’<P—50+k(5est—xp):m(él/4)
2. Me =Hg —1/4RCy —1/2.50—cx, /2 +1/2k3,, —kx, /2 =1/12mI?)

(RCx =—4/9m/I X2
< {4 RCy =-100-2/3cx, + 2k, — 2kx, —4/9mX,,
Xo +3/7¢c/mX, +27k/Tmx, =0

Dynamic momentum determination: Centre of mass

0 0 o (o] [ O
He| =[0 y12ml* 0 = 0

0 0 Yim?|o) |yi12ml®0
He

0 0 0 ] 0
—1 0 ledobxd o 1=l o
Mo \yzmidg) 6] |y12mite)  |1/12mi% o




EXERCISE - solution

Graphical analysis: Data retrieved from the time domain result.

T=01[s]= f :%:10[Hz]

w, =2 =62.8[rad /s]

Logarithm decrement

5=_P2% —Ln{ X }an§©ﬂ=0.0644

Ji-p? [ X(E+T)
The natural frequency Damping coefficient
Wy = Wqfl-B* < 62.8= e V1-0.06442 c
d — O = . e
u ﬂzizceq /(2 keqmeq):Ceq /(2 /Z%km)@
< 62.93= ‘/% < k=31828(N /m) & Cyq =251.3 = ¢ =586.4[Ns/m]



BEAM - SPRING EXERCISE

A straight homogeneous bar of 5.44 [kg] Is
connected to a spring with elastic constant equal to
525 (N/m). If the extremity B was moved down
12,7 (mm), and then released, determine:

a) The motion equation

b) Position, velocity and acceleration of point B.
c¢) The period of the oscillation.

d) The maximum velocity.

e) The reaction variation at point C.

Static analysis:
RCx Esprlng
2 Fx=0 (RCx =0
> Fy=0 < {RCy-mg+Kd,, =0
SME=0 |-0.076xRCy+0.457xKd, =0

RCy

N

mg

Rex=0; RCy=45.75(N) ., = 0.014492(m)



RCy

EXERCISE - solution
RC S
&lﬁx Fspring Due to the beam self weight, it should be

oscillating from the position of self static
equilibrium.

Kinematic analysis:

dg =dc +WxCG +W x (W x CG)

(0 —0,076 0 0 -0,076
0 }x 0 +<40 bx< 0 px 0
o) | o ] |-8) |6 | o

(0,07662
={ 0,0760
0

/\




EXERCISE - solution

Dynamic momentum: [ | .
0 0 0 0 0
Flezoiml2 0 0r=+« 0 ¢

12 0 1 120
- ——m
0 imI2 12 J
i 12 |
0
H. = 0 :
G 1 .
——ml“0
12

Dynamic analysis:

RCx = 0,41346?
RCy = mg —525(5,, + Y, )—5,44x0,0764

~0,076 x [5,44>< 9,81-525(0,01442 + y, )— 5,44 0,076é]+ 525(0,01442 + y, )0,457 = —% mL?é
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EXERCISE - solution

General differential equations:

0,410120 +279,8y, =0
0,7694y 5 + 279.8yg =0

0,410120 +149,1460 = 0

One possible solution:

yg = A.Cos(wt) + Bsin(wt)
or
0 = C.Cos(wt) + D.sin(wt)

Boundary conditions:

Jalt =0)=0 it =0)=0
s (t=0)=0,0127 or ot = 0) = 1,36°= 0,0238 [rad]




EXERCISE - solution

Final solution:

Ve Yer Ve
yg = 0,0127 x c0s(19.07 x t) 4
Yg =—0.242 x sin(19.07 x t) )
Yg =—4.618 x c0s(19.07 x t) i | u

001 0203 0405 06 0.7
..2.

0(t) = 0.0238 x c0s(19.07 x 1)
0(t) = —0.4538 x sin(19.07 x t)
0(t) = —8.655x c0s(19.07 x t)

-4-

RCx = 0.4134 x (-0.454 x sin((19.07 x t))*
RCy = 45.75— 525 x (0.0127 x c0s(19.07 x t)) — 0.413(~8.655 x c0s(19.07 x 1))



EXERCISE - solution

W

0.06

0.04

0.02

LI

0 0.1 0.2/03 I]4 0.5 0.6 l]?
1.005
0.014

Position of point B

0.2

0.14

0

(=]

N

£

= \H/ VE/IRVARY

Velocity of point B

Acceleration of point B

RCX

0.1

0.2 0.3 l]‘.d 0.5 0.6

0.7

48

a7

46

45

44

43

RCY

01 02 03 04 05 0.6 07
t 275



DOOR EXERCISE

-

The door of a restaurant is equioed with a spring
and damp system, so it can return to its original
position after the push and pull procedure.

The door has a mass of 60 (kg) and a principal
inertial moment of 7.2 (kgm?), relative to G2.

The rotational spring has a constant of 25
(Nm/rad).

a) Determine the critical damping coefficient.

b) A man with a occupied arm and in a hurry, uses its foot to open the door.
Calculate the angular velocity necessary to open the door 70°.

c) How long takes the door to reach the position of 5°.?

d) Repeat the questions a),b) and c) in the case the door possess a damping

coeficient of 1.3.

276



DOOR EXERCISE - solution

Kinematic analysis:

56‘312250+WXOG+WX(\NXOG)
(0) (091/2) (0] |
=04+<0x< 0 +4<0Fx|<0}x< 0O
\é) \ O J \9) \9) \ O J
(—0(0.455)
= 6(0455)

0
Dynamic momentum:

Vv~

IGlGl

T
()

S12

e3cat)




DOOR EXERCISE - solution

Dynamic momentum:

0] | 0 0 o ][0
[1,]10¢={[1s]+m 0 (-0455)" +0 0 10}
6) 0 0 (-0.455)° +0||( 0]
loiar 0 0 1(o
0 lgyep + M(—0455)° 0 10}
0 0 lgae3 + M(~0455)" |
( 0 0] | 0
0 >+ 05 X < 0 >
(loass +M04557)0| 0] | (Igses + M0O455%)0)]
e O p
0 S

(15565 + M0.455%)6)
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DOOR EXERCISE - solution

Dynamic analysis:

; {Zﬁ = ma,
~ L S
-- 2.Mo =H, —¢0 KO = (I g5, +M0.4552 )
39 18
c O . =S
(7.2+60x0.455%)0 + ¢ + kd =0
kO ,
1
< A
- 19.620 + 6+ 250 =0

Natural frequencies:

K
W= |~ = |22 _113(rad /s)
m, V1962




DOOR EXERCISE - solution

Damping coefficient:

Ceq

=Cy / 2,[Ke My, =1

IB — eq  eq
Ccritico

< C,, =44.3(N.s/m)

Movement equation:

19.620 +cO+250=0

Possible solutions for the movement equation:

0 = Ae® 0 = (As)e* 0 = (As®)e*
Substituting the solution into the egaution:

{sl} c +\/c2—1962

s2( 3924 3924
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DOOR EXERCISE - solution

For vibrations critically damping, the solution presents two real double solutions

O(t) = e (A, +1A,)

Differentiating one more time

O(t) = -W,e™"" (A +1A,) +e™ (A)

Using the necessary boundary conditions

t=0=60=0, [A+0xA =6, A, =0,
t=0=0=0, |-WA+A =0, |A =0,+W.06,

Substituting the constants into the movement equation:

o(t) =e™" (0, +t(6, +W.6,))



DOOR EXERCISE - solution

Mathematically, to obtain the maximum of a function, its is necessary to
differentiate and equal to zero the function.

dot) _
ot
= 0=e""(0,+W, 6,)+(-W )" (8, +t(6, +W.6,)) =
Any function e™" # 0, it can be verify :

1
St=—
W

n

0=

The maximum value for the functionis: 6 =70°=122(rad)

The intial angular velocity: g(t—i)—122—e_w”t(0+i(9 +io))<:>
w T W 7 113
o12-11 4 o
e 113

< 0, =374(rad / s)



DOOR EXERCISE - solution

Time to get 5° in rotation and in a critical damping system:

6 =5°=00872(rad) =e "' (0+t(3.74+0)) <
< 00872 = e M(374)

Being a non linear equation type, numerical methods for solution are required

00872 = e '1(3.74) < 00233 =t =
< gt) =t



DOOR EXERCISE - solution

Numerical solution method

g (tnew) — 1:old

A

[ 1:old — 1:new }
t old t new
2 (lucky value) 3.94
3.94 4.54
END 4.54 4.66
4.66 4.69
Note: Absolute error defined by user 4.69 4.69

and equal to 0.01(s)



DOOR EXERCISE - solution

For a over damping system, with 1.3 coefficient

C
f=—"—=c,/2/k,m, =13
Ccritico

< C,, =57.6(N.s/m)
Possible solution type:

o(t) =e ™ (A + A, keh(W,t)+ (A — A, Jsh(Ww,t )

Differentiating one time

O(t) = (— W, )e (A, + A, )ch(W,t) + (A — A, )sh(W )] +
+e_ﬂw”t[—Wd (A1 + Az)Sh(Wdt) + W, (A1 - Az)Ch(Wdt):

Applying boundary conditions

t=0=>6=6, | A+ A =6,
. . <= y
t=0=6=0, |-113*13(A +A)+W,(A-A)=6,
A _p
=y Al 0
Ay = 0y + W0,
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DOOR EXERCISE - solution

Substituting into motion equation

o(t) = e—ﬁWnt[(A1 + A, )eh(W,t) +( A - Az)sh(V\/dt)]
ot) =e™" (0, +t(0, +W.6,))

Mathematically, the maximum of a function is the result of a time function

derivative.

: do
At )=—=0&
(t) ~

< 0=—W,e ™ [(A + A, Jeh(W,t) + (A — A, Jsh(W,t)|+
+e M = (A + A W, Sh(W,t) + (A — A, W,ch(W,t)] <
For any valueof e

& 2W,t =1.51< t =0.805(s)



DOOR EXERCISE - solution
A(t=0.805)=6__. =70°=1.22(rad) <

A W, 0.805 . -W, 0.805
=>1.22= eﬁWnO-SO{ 0 [e © ﬂ o

0.938 2

< 0, =4.5(rad /s)
Substituting 5° or 0.0872(rad), we obtain:

00872 — ¢ teo| 45 (€M e )|
0.038| 2

& O 03635 — e—0.531t . e—2.407t
By a numerical similarly procedure

_ _ Table of convergence
0.03635+ e =% = g0 hnew told

t new

2 (lucky value) 5.86
5.86 6.24

6.24

A stronger kick must be used in a over damping system, even the
time to open the door 70° is almost the same. The initial angular

velocity is grater [3.74 to 4.5 (rad/s)], reflecting the increasing
resistant viscous moment.
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SYSTEMS WITH TWO DEGREES OF FREEDOM

- Instead of one equilibrium equation, it will take
two equations.

-The motion equations may be obtained by the
dynamic laws, by other virtual working principle
or by other methods (numerical, etc.).

For two degrees of freedom:

M Jis+ [CRixf+ [K fixj = £ (b))
Rt

Mass matrix Damping matrix  Stifness matrix ~ Load Vector



DIFFERENTIAL SOLUTION

-Integration of the motion equation:
1- Modal superposition method
2- Direct numerical integration

For mode shapes and natural frequencies determination, load vector is not used.

M Jix}+[K Jix} = 10}

Possible solution:
{x}={X}cos(wt)

Time derivatives should verify also:
X} =—{X} wsin(wt)

{x}=—{X}w? cos(wt)



DIFFERENTIAL EQUATION

[M] (- {x}w? cos(wt))+ [K]({x} cos(wt)) = {0}
Simplifying:

(- w? [M]+ [K]) (i} coswt)) = {o}

Homogeneous system with null solution ?

Searching for other solution rather then null, implies mathematically:

det(- w? [M]+[K])=0

Frequency determination wl and w2: Multiple solutions, mass matrix normalization.
For each frequency determination, mode shapes can also be calculated.



VIBRATION ANALYSIS EXERCISE

by Ly
;o | | g
* Analytical solution for determining
@ the natural frequencies and natural
modes of vibration.

5
/W\ﬁ N
1[m]

Numerical solution by ANSYS and
Interactive Physics 2000 (frequency and
@ time domain)

S

A

- 1[m] EE
®

| -

7N
|




SOLUTION

Ly

LLoad values

N N
o

[
‘© ©
= =
N~ —

]

A

Findig the position from static
equilibrium: el, e2

SE =G
SE =G

kzez —m,g _klel =0

_rn_Lg+klel =0
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SOLUTION

Findig the motion equilibrium equation

Z F =ma, kz(ez +X2)+mzxz _ng_kl(elerl_Xz)zo

YF=ma, k(e +x-%)+m%-mg=0

Applying the information from static
equilibrium:

kz(xz)+mzxz _kl(xl _Xz):()

kl(xi —X2)+n'55(1 =0

Introducing matrix formulation:

m, 0 [|X, k, -k, X,
_|_
0 m, 5(.2 _kl (k1+k2) X,

|

|

0
0

|

Load values

Ly
]
\
K2 £,
—
M?2
K1 XZE
—
M1
x1

Note: the degrees of freedom are displacements, producing mass matrix with units of
mass. If the degrees of freedom were rotations, this should produce units of inertial

moments.
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SOLUTION

For the homogeneous system:

(- w? [M]+ [K])({x} cos(wt)) = {o}

The non zero solution lead to:

—w?m, +k —k
det(-w? [M]+[K])=0 e det| ~ " T T l =0
e( W [ ]+[ ]) <~ Qe _kl _W2m2+(k1+k2)

o wimm, —w?[m, (k, + k,)+km, ]+ (k, k,)=0

By substitution, w?=a, a quadratic equation is obtained:

a’m,m, —a[m,k, + m,(k, + k, )|+ (k, k,)=0

_ ¥ [m,k, +m, (k, +k, ]2 [myk, +m, (k, +k, )F —4x(mym,)x (k. k,)

a
2(m1m2)




SPECIFIC SOLUTION

Being: M =m, =2lkg]
k, =6[N/m] k, =16 [N/m]

Solution for each real value:
a, =200 a,=1200 = w,=14142 w,=34641 = f =0.22508[hz] f,=0.5513[hz]

For the first frequency, the first mode of vibration lead to a indetermined system:

)+ D -

Choose x,,=1 and take the solution for x,,=3.0
Choose x,,=1 and take the solution for x,,=-0.333
Normalize both solution to mass matrix
{z//n} ~ 1 {3.0} ~ {0.6708}
Vi, 0 Hg_o} 1 0.2236

(o iy ol

m, 1 295

{ZZ} ) \/ (033 1>{mi 0 } {_ 0,333} {_ 0.1333} B {_0?527226}
0



Numerical solution using
INTERACTIVE PHYSICS 2000

The student should be able to model two degrees of freedom, as presented, and
obtain the time domain solution for each particular problem (m1, m2, k1 and k2).

interactive Physics - [trabalho_nota_2]

Ble Edt World Wiew Object Define Measure Script Window Help
DEME $BRB 32 Rk 3ALLLEA || Runr sopn |
00|g | ! ' i i :

interactive physics solution (for this last one, please follow the Fourier Analysis.
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FFT — Fourier Analysis 1/2

*Time domain transformation in frequency domain, using Excel data analysis capability.

eInteractive Physics can export “any number” of data points and these should be
carefully worked at excel. Excel has a limited number of data points for analysis (4096).
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FFT — Fourier Analysis — 2/2

*Excel needs to apply for “Add Ins”, new tool, called “Data Analysis”. For this new
capability, the student should work with Fourier Analysis, over a maximum of 4096 data

points.
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POWER GRAPH REPRESENTATION

sExcel give the possibility for graphing frequency versus power, for proper frequencies
determination. For the specific solution presented (k1=6, m1=2, k2=16, m2=2).
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eFor the above configuration
results, the first two frequencies are
not well identified. For other
specific case like (k1=15, ml=4,
k2=15, m2=3), the results presents
much more well suitable
interpretation (see next figure).
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Numerical solution using
ANSYS FOR MODEL ANALYSIS

The student should be able to model two degrees of freedom as presented and obtain the
frequency domain solution for each particular problem (m1, m2, k1 and k2).

The student should use the modal analysis capability with reduce mode shape extraction.

Note: See User Manual from LPAC.



