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CURRICULAR UNIT - SYLLABUS

Subject: Computational Mechanics.

Course Speciality: Construction and Industrial Engineering.

Main Scientific area: Structures and Solid Mechanics (MSE).

Classes: 60 h/Semester: T (Theoretical) PL (Practice and Laboratory).

Cycle: 22 (Master degree of Science).

Year / Semester: 12 year/ 2"4 Semester.

Learning outcomes and competences:

Understand and apply Finite Element Method formulation.

To be aware of beam and bar finite element formulation.

Understand and apply two and three dimensional elasticity formulation.
Understand and apply plate and shell finite element formulation.

Understand and apply the finite element method and the numerical solutions.
Learn to use commercial finite element software.



CURRICULAR UNIT - SYLLABUS

e Course contents (Extended version):
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Chapter 1 - Stages of the FEM. Bar finite element:

e Introduction, advantages and applications of the finite element method (FEM). Basic concepts in matrix
analysis of structures. Types of analysis. Fundamental steps in the FEM. Phases of the method.
Mathematical model formulation. Discrete mathematical models. Static and dynamic formulations.
Stiffness matrix and element assembly. Continuous mathematical models. Variational formulation. Bar
element formulation. Matrix formulation of the element equations. Isoparametric formulation and
numerical integration.

Chapter 2 - Finite element formulation:

e Standard flowchart of a finite element code. FEM general methodology. Shape functions. Interpolation of
displacements. Displacement and strain fields. Stress field. Constitutive models. Solution of the FEM
equations. FEM convergence requirements and error types. Optimal points for stress calculations.

Chapter 3 — Beam finite elements:

* Euler-Bernoulli beam finite element. Timoshenko beam finite elements. Reduced integration and

l+arnativia caliivinne fA
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Chapter 4 - 2D and 3D formulations:

e Two and three dimensional finite elements in elasticity. Finite elements formulation. Lagrangian and
Serendipity elements. Numerical integration. Application of plate and shell finite elements: Kirchhoff and
Reissner-Mindlin theories.

Chapter 5 - Computer Applications in Engineering.

e Computational applications in structural (static, dynamic, instability), thermal and fluid flow problems,
using a commercial finite element code.



CURRICULAR UNIT - SYLLABUS

— Final season (EF) and Appeal season (ER):

Distributed assessment with 4 working projects to be presented at classes (oral
presentations with power point slides, with written reports in word format) with 80%
weight for final classification;

Final Exam with 20 % weight for final classification;

Labor students, with special statute, may require full Examination during final and appeal
season, with 100 % weight for final classification.

— Special season (EE):

Full Examination with 100 % weight for final classification.

Language of classes: Portuguese and English

Bibliography:

Moaveni S., Finite Element Analysis, Theory and Application with Ansys, 2nd Edition,
Prentice Hall, 2003.

Onate E., Calculo de estructuras por el Método de Elementos Finitos, Centro
Internacional de Métodos Numéricos en Ingenieria, Barcelona, 1995.

Zienkiewicz OC, Taylor RL., The finite element method. Vol.1: The basis. Oxford:
Butterworth, 2000.

Zienkiewicz OC, Taylor RL., The finite element method. Vol.2: Solid mechanics. Oxford:
Butterworth, 2000.

Fonseca, E.M.M, Sebenta de Mecanica Computacional, ESTIG-IPB, 2008.
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e Basically consists of an adaptation or modification of the approximation
methods used in engineering and science, such as, Ritz method, 1909.

e Usually known as a mathematical method for solving PDE partial differential
equations, such as, Poisson , Laplace, Navier-Stokes, and so on.

e Easy to program on computer codes:
— Using high level programming languages, such as FORTRAN, C, and so on.
e Consider as an advance solution method in several designer codes
e Commercially available:
— Ansys, Abaqus, Adina, and so on.

First book to be published:
— 1967, Zienkiewicz and Chung.

— “Professor Zienkiewicz is one of the originators of the finite element technique and
has since the early 1960s dominated the finite element field internationally”
e Special awards in computation mechanics (by the European Community on
Computational Methods in Applied Sciences and Engineering (ECCOMAS)):

@ — Prandtl and Euler Medals.

b

— 0. C. Zienkiewicz Award for Young Scientists in Computational Engineering Science.



FINITE ELEMENT METHOD INTRODUCTION

e Fundamental steps in the FEM:

IDEALIZATION DISCRETIZATION SOLUTION

Discrete Discrete

Physical Mathematica
model > solution

system model

A

Solution error
Discretization + solution error

Modeling + discretization + solution error

VERIFICATION & VALIDATION




FINITE ELEMENT METHOD INTRODUCTION

member

Basic steps:

SE
joint¥

support
Physical System

<

o m
o EA<<>>N

Apply loads
and supports:

Solve for joint
displacements:



e Engineering applications:
— Linear, material / geometry non-linear,
structural analysis (static and dynamic);

— Linear and material non-linear thermal
analysis (steady and unsteady);

— Linear and non linear computational fluid
dynamics (CFD);

— Coupled and uncoupled analyses;

— Optimization.




FINITE ELEMENT METHOD INTRODUCTION

Finite Element approximation:
— Dependent on domain analysis.

finite element geometry:
— Bad and acceptable.

Simplify analysis, using symmetry conditions on:

— Geometry;
— Loading conditions.

Usual singularities:

— Material behaviour: cracking and crushing;
— Material interfaces: bonding conditions;

— Geometry singularities.
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FINITE ELEMENT METHOD INTRODUCTION

e Level of approach:

— Depends on the physical system.

e Finite element Physical MMathematical Fiute Element
Physical : . Structural WModel M : S
: idealization Klogel Name Discretization
Component

bar
plates

beam

QA

NV > .
v Z /*
Pysical Finite element % tube. pipe -
C -
C o

tdealization

spar {web)

3D solids
shear panel
(2D version of above)

< &

Figure 7.4, Examples of prinutive stmuctural elements.

b



FINITE ELEMENT METHOD INTRODUCTION

A finite element is defined by: Er—_'__!
o @ |
— His geometry; . ®
— The node coordinates; - - Ix
— The interpolation node coordinates; S ¢ E

The number of degrees of freedom;

The nodal variables definition (displacement, rotation , temperature, pressure);
The polynomial approach;

The type of continuity that nodal variables should satisfy in element and boundary:
Co, C1, C2:

* |f the approaching variable and derivatives, are to be continuous over the entire element,
the interpolation functions should be continuous up to the desired derivative order.
(Important to calculate stress field, that depends on displacement derivatives).

* |f the approaching variable and derivatives, are to be continuous over the boundary, the
Interpolation function and his derivatives up to the desired order, must depend on a
unigue way from the nodal variables.




FINITE ELEMENT METHOD INTRODUCTION

* Pre-requisites:
— Apply the acquired knowledge and competences of:
o differential and integral calculus;
* numerical methods;
* Programming;
* mechanics of materials;

¢ solid mechanics.

— Understand oral and written English.

e Main stages in every Finite Element Analysis:
— Pre-processor:

e Geometric modelling (geometric primitives and other modelling tools), followed by
mathematical modelling (mesh nodes and finite elements).

* Mathematical modelling (mesh: nodes and finite elements).
e Material behaviour, Boundary conditions.
— Processor
e Solver (direct, iterative, etc.)
— Post-processor
@ e Allows to watch the results.

Po



FINITE ELEMENT METHOD INTRODUCTION

Solution convergence:
— Numerical approximation to exact solutions (analytical).

— To assert convergence is to claim the existence of a limit, which may be itself

unknown. For any fixed standard of accuracy, you can always be sure to be within it,
provided you have gone far enough

Convergence happens when the discretization error becomes almost zero.

© 2002 Brooks/Cole Publishing / Thomson Learning™

Exact solution
\ Number of elements
;o

Displacement

Compatible displacement
formulation




SOLID MECHANICS INTRODUCTION
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SOLID MECHANICS INTRODUCTION

Relation between strain and displacement (1st order,
linear statics).

— u,v,w (displacements). ou oV OW
) Ex =~ }/yz =+t
Exx OX 0z 6y
ov
Eyy Ey = ou ow
u oy Vv =5+&
2 ([ e} > ui=ly o _ow oo
Ty w Yoa I T Vo
Vx ——— 4
7/ny i | r
e Relation between strain ana displacement (Znd i aax
order, geometrically non-linear statics). 2\ 3y
o 10
INL]=| 2\ &z
" u )
=10 | {s}-[L]{u}+[NL]{L>{u}= v Yo
7yz W &E
Y x 990
d
j/xy) L X ay
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SOLID MECHANICS INTRODUCTION

 Dynamic equilibrium:
a [ X ]
00 Al Oy +F =pu

OX oy 0z

0y 00y Oy e W el = LT olef i) b

OX oy 0z ﬁ
a [ X )

OTq Al 00y +F, =pw

OX oy 0z

e Static equilibrium:

00 - oty + Oy +F =0
OX oy 0z
or,, 0o, Ot L] {e}+{F}=0 —=—> [L] [Dfe}+{F}=0

OTq + 0Ty + 00y +F =0
OX oy 0z




SOLID MECHANICS INTRODUCTION W 0

* Plane stress state: stress strain relation for isotropic materials:

— This usually occurs in structural elements where one dimension gis
compared to the other two, i.e. the element is flat or thin.

— The stresses are negligible with respect to the smaller dimension as they are not
able to develop within the material and are small compared to the in-plane

stresses.
O-xx z-xy 0 gxx gxy O 1 1% O
— Stress tensor.
Ty Oy 0 Ey Sy 0 D=1E2 v 1 0
— Strain tensor. 0 0 O 0 0 &, o 0 (1-v)i2

— Constitutive Law.

* Plane strain state: stress strain relation for isotropic materials:

— If one dimension is very large compared to the others, the principal strain in the
direction of the longest dimension is constrained and can be assumed as zero,

yielding a plane strain condition. 1 1L 0
-V
— Stress tensor. r, 0 &y 1 0
— i £,
Strain tensor. y 0 oy Y
— Constitutive Law 0 o, 2(1-v) |




SOLID MECHANICS INTRODUCTION

e Thin plate theory (Kirchhoff):

— The behavior of plates is similar to that
of beams. They both carry transverse
loads by bending action.

— Strain displacement relation.

ou o*w
Ay 2
XX OX ag( O O-xy 0
oV oW
ef=1¢e, t=9 — (=-10 — ¢ lo]=|o, o, 0
ay ay y yy
o v _ -
0y OX] | OXoy | o
— Stress displacement relation. '
62
Oy 1 v 0 6_)(22
ol=lo teplel=——2 v 1 0 | & lw
yy 1—V2 1—1/ ayZ
O'Xy 0 0 2 82 -
o G L R Wil Rl

o — Matrix formulation
=2,

oo  lo)=[Dlie}-—zDliLjw



SOLID MECHANICS INTRODUCTION

e Thin plate theory (Kirchhoff):
— Plates undergo bending which can be represented by the deflection (w) of the
middle plane of the plate.

— The middle plane of the plate undergoes deflections w(x,y). The top and bottom
surfaces of the plate undergo deformations almost like a rigid body along with the
middle surface. The normal stress in the direction of the plate thickness (z) is

assumed to be negligible.
— Thin plate theory - does not include transverse shear deformations.

"
« U
— Infinitesimal slice of a thin plate thickne
e Rectangular angles are preserved

2 !
. Before loading After loading




SOLID MECHANICS INTRODUCTION

* Thick plate theory (Mindlin):
— Strain displacement relation.

1 0 0 0
rG A 1_V 1_V < 3
XX 1% 1 0 O 0 XX
ny 1—1/ 1—V gyy
E
L = 1 X < S
oy 1+v| O 0 > 0 0 o
v 0 0 0 I o] |%
\O-ZXJ 2 1 ngXJ
0 0 0 0 = E (ae aey)
L 2 | O, =— > L +v—
Chimmce rAin A [ H. Alcirlam~aimanind vaAaladk: A 1_ v ax ay
— iSpracement reration
Stiress generaiizea aisp £ 59y 89x
G, =-— > Z + v
1-v oy 0 X




SOLID MECHANICS INTRODUCTION

Thick plate theory (Mindlin):

— The transverse shear deformation effects are included by relaxing the assumption
that plane sections remain perpendicular to middle surface, i.e., the right angles in

the BPS element are no longer preserved.

— Planes initially normal to the middle surface may experience different rotations
than the middle surface itself

— Analogy is the Timoshenko beam theory. w . | N

w

Displacement field g | =
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SOLID MECHANICS INTRODUCTION

e Yield Criteria for Brittle Materials:

— Maximum Principal Stress Failure Criteria:
Fracture will occur when tensile stress is greater
than ultimate tensile strength.

7, Hydrostatic
Axin

H

P
* Yield Criteria for Ductile Materials: ﬁ _ Tresca

— Tresca Failure Criteria: Yielding will occur when
shear stress is greater than shear yield strength. l.""d

#
e

Tresca
Yield Gurve

o, >0,

— O _plane
O-l 63 > y g)r:nhrlo Plane)
2

O,—0, >0
or 1 3 y op—oy+oy=10

— von Mises Failure Criteria: Yielding will occur
when the von Mises stress is greater than yield
strength.




FRACTURE MECHANICS INTRODUCTION - concrete

Concrete material should present yield surface
criteria:

— Mohr Coulomb or Drucker Prager.

It must present also flow rules that may be
associated or not:

— This flow rules defines the orientation of plastic
strain. If this orientation is orthogonal to the yield
surface than is consider an associative rule.

Continuous damage theory:

— Continuum mechanics provides a mean of
modelling at the macroscopic level the material
damage that occurs at the microscopic level.

— Damage criterion for concrete (Willam and
Warnkle, 1974). Cracks are treated as a “smeared
band” of cracks, rather than discrete cracks. The
presence of a crack at an integration point is
represented through modification of the stress-
strain relations, introducing a plane of weakness
in a direction normal to the crack face.




FRACTURE MECHANICS INTRODUCTION - concrete

Tha
11ic

— fcu = uniaxial compressive strength.

The
the

advantages:

failiir
1atiui

N Q1
T ou

=
=h

1o,

1 7

a

Oa and Ta, are average stress components; ; f
cu

Z is the apex of the surface ;

The opening angles of the hydrostatic cone are defined by
@1 and @2 . The free parameters of the failure surface z
and r , are identified from the uniaxial compressive
strength (f cu), biaxial compressive strength (fcb), and
uniaxial tension strength (f t ).

Willam and Warnke (1974) mathematical model of
failure surface for the concrete has the following

Close fit of experimental data in the operating range;

Simple identification of model parameters from standard
test data;

Smoothness (e.g. continuous surface with continuously
varying tangent planes);

Convexity (e.g. monotonically curved surface without
inflection points).

+ =1
r() f,

|
=% ?':a

Deviatoric Section { o, = -0.5¢,,

03/ leu

I



FRACTURE MECHANICS INTRODUCTION — concrete in ANSYS

e The criterion for failure of concrete due to multiaxial stress state may be
represented by this inequality:

— F is a function of the principal stress state, S is the failure surface and fc is the

uniaxial crushing strength. F S50
e |f the inequality is not verified: f B

C
— There is no attendant cracking or crushing.

e QOtherwise:

— The material will crack if any principal stress is of tensile type, while crushing will
occur if all principal stresses are compressive type.

— Failure by crackings is represented with a circle outline in the plane of the crack.

— Failure by crushing is represented by an octahedron outline.

— If the crack has opened and then closed, the circle outline will have an X through it.
— Each integration point can crack in up to three different planes. Tha first crack at an

Ux

integration point is shown with a red circle outline, the second crack with a green
outline, and the third crack with a blue outline. S

Crack plane



FRACTURE MECHANICS INTRODUCTION - concre&e in ANSYS
,t\

A total of five input strength parameters are
needed to define the failure surface as well as
an ambient hydrostatic stress state .

Ultimate uniaxial tensile strength (ft)
Ultimate uniaxial compressive strength (fc)
Ultimate biaxial compressive strength (fcb)
Ambient hydrostatic stress state (cah)

Ultimate compressive strength for a state of
biaxial compression superimposed on
hydrostatic stress state (f1)

Ultimate compressive strength for a state of
uniaxial compression  superimposed on
hydrostatic stress state (f2)

e However the failure surface can be specified
with a minimum of two constants:

— f,and fc.
— The other parameters default: fcb=1.2 fc,
@

=

Po

f1=1.45fc, f2=1.725 fc.

red
green
blue

L L]

ft=2.7 (MPa]

________ S &

‘ E=66.9 [GPa]
|
|

I fcO=44 [MPa]  unconfined
|
fCC=88 [MPa] confined

fi fi

Jeo 125442254 (1 47940, T _ 2,

feo \ feo feo




PLASTICITY

e Plasticity theory provides a mathematical relation that characterizes the elasto
plastic behaviour of different materials.

e The main parameters during plastic analysis are:

— Yield criterion (determines the stress level at which yielding is initiated. For

complex stress tensors, this function depends on several stress components, which
may be interpreted as an equivalent stress).

— Flow rule (determines the direction of plastic straining).

— Hardening rule (describes the changing of the yield surface with progressive
yielding):

« ISOTROPIC hardening. N RO
e KINEMATICS hardening. |

200

Engineéring o€

Stress (MPa)
&
=

e Stress strain curves:

] 5 10 15 20 25 30 35 . 44 45

— For finite element analysis with plasticity, what we really need is stregga-mﬁféstic
strain curve.

@ — convert the Engineering stress strain to true stress strain, using equations.
=

) = e True Strain e=In(1+E) ; E = engineering strain

'Pb e True stresss s=S(1+E)  ;S= engineering stress



DIRECT STIFFNESS METHOD

e Introduction to structural analysis:

Structural Analysis
|

Classical Methods Matrix Methods

— Vitrual Work — Stiffness by Definition

— Force Method —

—  Slope Deflection
— Trusses

— Moment-Area

— Beams



DIRECT STIFFNESS METHOD

Truss analysis:
— Finite elements to be used: Bars.
— Composed of slender, lightweight members .
— Allloading occurs on joints.

— No moments or rotations in the joints.
— Axial Force Members (Tension (+) , Compression (-)).

Stiffness:

— Kij = the amount of force required at i to cause a unit displacement at j, with
displacements at all other DOF = zero

— A function of: l

e System geometry.
e Material properties (E, A).

* NOT a function of external loads.

K= AE/L

|
|
e Boundary conditions (Pinned, Roller or Free for a truss). ‘




DIRECT STIFFNESS METHOD

From mechanics of materials (Strength of A= 1

o i - ! . Jkcqu lent
materials): — !
— Element stiffness may be calculated according to: | g -

e Axial deformation of a structural element (stress

e Spring behaviour:

F=Kxo < K=i
o

and deformation definitions):

5= oo LE|=F
AE L

Internal effort (normal)

— Local coordinates

N=—x0

— Global coordinates

N, =%(ujCOSa+VjSina—uiCOSa—ViSi.r_1

k

>




DIRECT STIFFNESS METHOD

\A/

vvc Cdi

Nn rraatn Aa cti Nnce rmAatri
Ul aLc a DQUITTITITOD riiatcil

e riv +
material and geometric properties of the structure
A square, symmetric matrix Kij = Kji
Diagonal terms always positive

The stiffness matrix is independent of the loads acting on
the structure.

Many loading cases can be tested without recalculating the
stiffnegsmatrix

Ki1 | Kiz U,

Ko1 | Koz V,

K
/
E
i




DIRECT STIFFNESS METHOD

Stiffness by Definition
— 2 Degrees of Freedom
Direct Stiffness
— 6 Degrees of Freedom
— DOFs 3,4,5,6=0
— Unknown Reactions (to be solved) included in Loading Matrix

Stiffness by Definition Solution in RED K | Koy

Direct Stiffness Solution in RED/YELLOW o | K

The fundamental Procedure:

— Calculate the Stiffness Matrix.
— Determine Local Stiffness Matrix, Ke.

— Transform it into Global Coordinates, KG.

— Assemble all matrices.

— Solve for the Unknown Displacements .

— Use unknown displacements to solve for the Unknown Reactions.

— Calculate the Internal Forces.




DIRECT STIFFNESS METHOD - case 1

e Thematic exercise: L=2 [m]

A
A 4

— First, decompose the
entire structure iNt0 @ == q
set of finite elements. 6 5

— Build a stiffness matrix

for each element (6 1

Here).
— Later, transform all of ™ '

the local stiffness ﬂé%

element matrices into yi > X

global stiffness element

matrix. Element = Nodei Node j Angle
— Assembly all the 1 1 5 0

element global stiffness

matrix. 2 2 3 90
— Solve problem: 3 3 4 180

e E=2.1E11 [N/m2] 4 1 4 90
: e A=0.001[m2] 5 1 3 A5
o - 6 2 4 135




DIRECT STIFFNESS METHOD - case 1

e Element Stiffness Matrix in Local Coordinates:

— Remember Kij=the amount of force required at i to cause a unit displacement at j,
with displacements at all other DOF = zero.

— For a truss element (which has 2 DOF), the axial displacement as “UL” and t
internal force as “F” in the local coordinate system.

K, x UL, + K, xUL, =F, R/
K,y x UL, + Ky, x UL, =F /\

EA_EA

1 L UL _[R

_EA EA |luL [ |F, F_ l_ J
L LL ! .

a7




Element Stiffness Matrix in Local Coordinates (expanded to matrix dimension)

DIRECT STIFFNESS METHOD - case 1

YG
Ye A i xe
\
Fyi
N
> g
/FX - _
ﬁ 0 ﬁ 0
T o T o
K. Lw=| _ 4 AE
— 0 — 0
Le Le
0 0 0 0]
Element Stiffness Matrix in Global Coordinates
[ AE 2 AE .
~ s ()] Twﬂ(ﬂ)ﬂn(ﬂ)
Cooeyints) L sin(0)
[K-]ﬂ= AE AE .
@) —Too'(ﬂ)ﬂn(ﬂ)
-co@sin®) - ain'(O)




DIRECT STIFFNESS METHOD - case 1

Relation between local and global displacement values, using angle of

inclination:

u, =U. cos(@) -V, sin(O)
v, =U, sin(8) +V, cos()

|$:

j

Uj

uj

Vi

U, cos(#) -V, sin(9)
U, sin(&) +V; cos(0)

e Relation between local and global displacement values, using nodal

coordinates:

rUi\
Vi
Uj
Vi)

(cos(@) —sin(@) 0O 0 (U,
sin(@d) cos(0) 0 0 V.,
. . <I . -
0 0 cos(d) —sin(6) J-
0 0 sin(@) cos(9) ||V,
1 -m 0 0 (U] | XX
m | 0 0 ||V L
X >
0 0 I —m Uj [ = Yi—Yi
| (e)
0 0 m I ]|V

L =y, =y f + 0= x ]
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DIRECT STIFFNESS METHOD - case 1

Element stiffness matrix in global coordinates:

[

global

s

global

= Tlocal—>global KI?JcaI Tlocal—>global t
J= [ Keea ] |

|==2

|2 Im 12

EAl Im m?* —Im
L& 12 —Im |2
—-Im -m* Im

Element stress in local coordinates:

oc=E

U

Ui E U,
o = et 1>{U_

J

Element stress in global coordinates:

Ayl




DIRECT STIFFNESS METHOD - case 1

e Structures are composed of many members with many orientations
 The Element stiffness matrix must be transformed from a local to a global

coordinate system. cos(d,) -sin(@,) 0 0

o . t [T ]: sin(6,) cos(4,) 0 0
[Kglobal ] = [Tlocal—>global ][ KIocal :I[-I-Iocal—>global ] el 0 0 cos(d,) —sin(6,)
0 0 sin(6,) cos(4,)

e The load vector must be transformed from a local to a global coordinate
system.

{ gelobal }: [Tlocal—>(qlobal ]{Fgelobal }

Fj / .

2

/ . /S o _| y
iob / L "



DIRECT STIFFNESS METHOD - case 1

e Element stiffness matrix in global coordinates.

4 3 Element 1 Element 2
1 0 -1 0] 0 0 0 O]
AEIO O O O AEIO 1 0 -1
L|-10 1 0 L0 0 0 O
0 0 0 0 0 -1 0 1
Element 3 Element 4
10 -10 0 0 0 0]
. AE| 0 0 0 0 AE|O 1 0 -1
2 I Lo 0o 0 o0
U U U U _O 10 1_
Element 5 Element 6

o T J
e\ Ty 12 72
o
S T2 T S

Ve
5
7
Vs

N
N

N
N

NN NN

RERTRERE
I|
S<

N
N

b’<b‘<§<




DIRECT STIFFNESS METHOD - case 1

e Assembling element matrices:

— Each element matrix must be positioned in respect to the global degree of freedom

that is related to.

ul vl u2 v2 u3 v3 ud v4
ul K®+KP+K® KE+ K5 +K® K% K% K% K% K% K%
Vi | ki, ke, - | Ky - Ky K K - KW K%
u2 KKy KKK | KKK L KS K, K L Ky
72 P S Ky K KK K S K, S e ke
ud | ke K K, K, 0 KKK | KKK 1| K% K%
< K 4 K, i Ky Ko Kot K | Kb KohKS | K% 0 K%
ud P ke ke O O R A Y
N O Ky o K o K K% Ko K KGHKS KKK
ul vl u2 V2 u3 v3 ud v4
ul | uL+1/0L)+0 0+1/(2Ls)+0 -1/Ly 0 -1/(2Ls) -1/(2Ls) 0 0
vl 0+1/(2Ls)+0 0+1/(2Ls)+1/L, 0 0 -1/(2Ls) -1/(2Ls) 0 -1/l
u2 -1/, 0 1/L,+0+1/(2L¢) 0+0-1/(2Lg) 0 0 -1/(2Le) -1/(2L¢)
V2 0 0 0+0-1/(2Le) 0+1/L,+1/(2Ly) K®, Ke, 1/(2Lg) -1/(2L¢)
u3 -1/(2Lg) -1/(2Lg) 0 0 0+1/Lg+1/(2Ls) 0+0+1/(2Ls) -1/Lg 0
v3 -1/(2Ls) -1/(2Ls) 0 -1/L, 0+0+1/(2Ls) 1/L,+0+1/(2Ls) 0 0
OM 0 0 -1/(2Le) 1/(2L¢) -1/L, 0 1/Lg+1/(2Lg)+0 0-1/(2Lg)+0
» v4 0 -1/L, 1/(2Lg) -1/(2Le) 0 0 0-1/(2Lg)+0 0+1/(2Lg)+1/Ly




DIRECT STIFFNESS METHOD - case 1

* Introducing boundary conditions:

— Eliminate lines and columns where displacements are known (method 1)

— Solve the remaining system of algebraic equations.

0.67677 0.17677 -0.5 0 -0.17677 -0.17677 0 0 0
0.17677 0.67677 0 0 -0.17677 -0.17677 0 -0.5 0
-0.5 0 -0.17677 0 0 -0.17677 0.17677 0
0 0 -0.17677 0.o7/677 0 -0.5 0.1767/7 -0.17/677 0
-0.1/76/7/( -0.1/76/7/( 0 (0] 0.67677 0.17677 -0.5 0 0
-u.Lror/( -u.Lror/( 0 -U.b 0.17677 0.67677 0 0 0
V] V] -0.17677 U.LIO1 [ -0.5 0 0.67677 -0.17677 50000
V) -U.0 0.17677 -U.LIUI [ 0 0 -0.17677 0.67677 0
0.67677 0 0 -0.17677 0.17677 0
0 0.67677 0.17677 -0.5 0
0 0.17677 0.67677 0 0
-0.17677 -0.5 0 0.67677 -0.17677 50000
0.17677 0 0 -0.17677 0.67677 0

v3=-0.000238 (m)
u4 = 0.0011496 (m)
v4=0.000238 (m)



METHODS FOR INTRODUCING BOUNDARY CONDITIONS

e Method 1:

Assuming the following system of equations
* firepresent external forces or reactions at prescribed displacements.

Assuming any nodal known displacement, for example u2=02.

kou, + kpu, + kgu, + ..+ ku, = f
K,u, + kpu, + kypu, + ... + k,u = f,
Kyl + Kpu, + Kiu, + o+ Kpu, = f,
k,u + k,u, + k.u + .. + k.u = f

Eliminate the line and column number associated with prescribed degree of
freedom, and modify second member of each equation according to:

kou, + kgu, + ... + kyu, = f —k,u,
) Kjyu, + Kgu, + .o+ k,u = f,—k,u,
kknlul + kn3u3 + + k3nun = fn _ kn2l']2

Solve the equation number that corresponds to each prescribed value:

f, =k,U, + KU, + KUy +...+ K, U

2n+'n



METHODS FOR INTRODUCING BOUNDARY CONDITIONS

e Method 2 (Penalty):

— Assuming the following system of equations
* firepresent external forces or reactions at prescribed displacements.

— Assuming any nodal known displacement, for example u2=02.

kou, + kpu, + kpu, + .. o+ kyu, = f
Kyu + kypu, + kpu, + ... + k,u = f,
Kknlul + k,u, + kau, + .. + k.u = f

— Multiply the element from diagonal corresponding to the known variable and also
the independent member, as shown.

-

k,u, + K,U, + Kkgu, + ... o+ kU, = f,
20 20 .
KU, + (10 )k22u2 + Kypu; + ... + k,u, = (10 )k22u2
KUy + Ka,U, + Kypu; + ... 4+ ku, = f,
KU + K.,U, + kU, + ... + Kk, u, = f,

equation that corresponds to specified DOF, allow to conclude:

T — The
.\% = (1020)k22u2:(1020)k22u2 < U=
PO



PRACTICE — CASE 1
e Practice with ANSYS.

— Specify file management;
— Filter the analysis (structural).

— Specify method of approximation:
* P=increase precision of polynomials, increasing degree of interpolation functions.
* H=increasing precision with mesh refinement, holding degree of polynomial.

W windows Update B it Meda Plape A5 CMaP Uiy :
3 wirzip Microsaft PaverPaint % DISPLAY Help i

Mrwn rarumenta dn Mfic (2] Microzoft Dutlook. DISPLAY tiliey

& [ensvseD

@ Abrir un documento do Office Microsoft Excel @ Help System
P Microsoft Access " teractive
@ Programs : i ‘wiorking direchor i
o Eﬂ Femramentas da Microzcft Office ¥ @ Readme orking directory ICZ\fI\BS\CUISD_AF'_MEF\ans_l,lsw

& W Microsoft Wor un Interactive Mow . X
&5 Documents f floi ikl i Graphics d
5 sa ! = VR E 0 T unirstaler raphics device name

Settings 4

- 3 o

@ Find 3 [5 Eli Initial jobname
@ L 5 COTaise r
7 = (3 ED-Tridim »

— = &1

3 CoSMOSH 2 . tdemary requested [megabytes]
& Log Ofl Pilota... [ﬁ Adoke fooba » #1ed gany
[5 Autodesk Mechanical 3 3 for Total Workspace
¢ » | MEF Mizrosoft PowerH

for Database 3

Read START AMS file at start-up? es

G configuration

I

Parameters to be defined
[-parl vall -par2 val2 ..]

Language Selection U5 English] -

Run Close | Resst | Cancel | Help

| P | o et | s s0. [Gsrics OESTL Y




PRACTICE - CASE 1

e Specify finite element:
— LINK 2D Spar.

e Real constants:

— Every thing that is constant during simulation.
e |ISTRN (Initial strain). )
ISTRN = I

e AREA (cross section area).

e Materials:

— Steel: Homogeneous, isotropic.

menu_iten ox snter ANSYS Command below CPREP?Y

s

-’
| s | [ | Wpinc s | @5 {[Gmisvar_ DB LR s




o
—
—

— Keypoints by coordinates in active coordinate system;
— Lines may be created using end keypoints;

— Mesh size selected, using line divisions;

— Use appropriate command to mesh the geometry.

— Impose boundary conditions.

DL EER @ e

. ______________mop
PEd | s | vt | Byiuepai | Poisiss |[imerss BETLEH R 1 rEEr, hepion | Fpcver | Binceas | gesrss [Gaversr. CE PN L)




PRACTICE - CASE 1

e Preparing the solution:

Window for boundary conditions inputs (displacement).
Plot boundary conditions (Plot CTRL).
Window for boundary conditions inputs (loads).

Command to start solution.

End of solution phase.

uuuuuuuuuuuuuuu

|| | B2 W > | Sypemnnp | Elmemn o | Eansrsiso [[@awsvsmo Byscrash | [@EELTSLHELR ov

|| Ao # | E]Mewet Fon | @yav5 550 [[GGANSYERD Myimcpunish | [WIEBL FOLE B R 08




Post-processor:
— Displacement contour;

— Vector displacement results (nodal);

PRACTICE - CASE 1

ANEYR 5.5.2
APR 20 2001
01:16:13

HODAL SOLUTION
STEP=1

L

TIME=1

L=t ] CAVGH
naYa=0
PowerGraphics
EFACET"1
AVRES=MAT

oMX =, 001121
#Hx =.001121
o

- 1258-03
_Z49R-03
«3748-03
.492E-03
L623E-03
< T47E-03
LE2E-03
.996e-03
001121

B000EEDEN

ANSYS 5.5.2
AFRE 20 2001

+1258-03
.2402-03
+3T4E-03
L4082-03
LETIE=03
L 7472-03
SBTE-03
L995E-02
001121

I
| st & i W > | Gyaedos | EMeco.. | gansvs s |[@ansvss. . B sicPan. |

|9 5LE KR T

| Ay epion | Fjeor | @ansvss |[giansves Myiscpart

WBELELE IR 16




DIRECT STIFFNESS METHOD - case 2

e For the Element submitted to axial load, knowing that wl=2 [m], w2=1 [m],
thickness t=0.125 [m], Length L =10 [m] and Load P=1000 [N].

e Determine the vertical displacement at nodes 1,2,3,4,5.

TR AR L s T B RO A
i e T

P A S By s
e S e R TR

As

Ag
P

Cross section area (A) Length (1) Elastic Modulus(E))
Element (e) | Nodes
[m?] [m] [N/m?]
1 1 2 | [A(y=0)+A(y=2.5)]/2=A(el1)=0.234375 2.5 10.4x10°
2 2 3 | [A(y=2.5)+A(y=5)]/2=A(el2)=0.203125 2.5 10.4x10°
3 3 4 | [A(y=5)+A(y=7.5)]/2=A(el3)=0.171875 2.5 10.4x10°
4 4 5 | [A(y=7.5)+A(y=10)]/2=A(el4)=0.140625 2.5 10.4x10°




DIRECT STIFFNESS METHOD - case 2

e Solution method:
— First, decompose the entire structure into a set of finite elements.
— Build a stiffness matrix for each element (4 Here).
— Assembly all the element global stiffness matrix.

RS RS ERTEE I R T [ R R TR R

e e




DIRECT STIFFNESS METHOD - case 2

Stiffness matrix for each element

1

{3

A
A2
As

{4

(A+1+A1)E

Keg =

11111

<
000k4|,_m
© ©o o o o
© O o o o
© © o o o

Il

©

3

m—

X

.

11111

11111

11111

k1|,_nOOO

L ]
Il
g @4
M
[T— \l



DIRECT STIFFNESS METHOD - case 2

e Assembly all the element global stiffness matrix.

[K](G) _ [K](le) " [K](ze) n [K](SG) N [K](4G)

K-

k, -k, 0
—k, k +k, -k,
0 -k, k,+k,
0 0 -k,
0 0 0

e Apply boundary conditions.

* Solve the algebraic system of equations for u2,u3,u4 and u5.

0
0
—k,

K, +K,

_k4

e Solve the first equation to calculate reaction forces.

0 0 :

+k, +Kk, -k, 0 0 ||u,

-k, +k, +K, -k, 0 [<U,

0 0 -k, +k, +k, -k, ||u,
” 0 0 —k,  +k, ] s

T O O O

0
0.001026
0.002210
0.003608

0005317



VARIATIONAL METHODS

Energy methods:
— Common approximation in solid mechanics to be use in finite element analysis;
— External forces cause deformation into the element. During deformation, the work
developed by external forces is sustained by elastic energy.
— Total potential energy (1) is equal to two parts:

e Deformation energy;

* The energy corresponding to the work developeg by externaIFforces.

F= ({£ .)An‘i =ky'

HpZU +W T‘ T__ $r T['\




VARIATIONAL METHODS

e  Minimum potential energy theorem:

— Assuming any virtual displacement (u) to the deformed configuration, satisfying
the cinematic conditions , the energy variation with respect to this displacement is

equal to zero (Minimum energy).

ou ou ou

— Deformation energy, depends on stress stain field.
M = [(ofde}dv M = [[ENe)ise}dv

volume volume

— Work developed by external forces, depends on the displacement field.




VARIATIONAL METHODS (BAR ELEMENT)

To determine the equilibrium configuration of a uniform bar submitted to
external loading:

— A displacement field is required to satisfy the minimum potential energy.

The polynomial approximation may be the simplest solution:

n .
u(x)=> ax =a;+a,x+a,x* +...+a,x"
i=1

— For example assume 1%t order approximation:

u(x) =a,+ax

— In matrix formulation:



VARIATIONAL METHODS (BAR ELEMENT)

e The polynomial approximation may be the simplest solution (cont.)
— Displacement field is valid from node i to node j.
— Lets apply this solution to node i (x=0) and to node j (x=Le).

o

— Group both expression in to a matrix formulation:

RN

— Lets assume that node displacement are well known and try to find nodal
parameters (a0 and al), inverting the solution:

@ {1010}{1010}{101 0 aO:1 0 lu
ipb" 1oL 170 et 170 3 He a | |[-1/Le 1/Le ||y,

Le




VARIATIONAL METHODS (BAR ELEMENT)

The polynomial approximation may be the simplest solution (cont.)
— Substitute the nodal parameters in to the assumed 1st order displacement field.
— The interpolation functions (Ni, Nj) will appear.

— Those functions are also called shape functions, because they may be used for
interpolate the geometry coordinates.

- of]

a

1 O (ui N. N;
=<l X> ] ’
—-1/Le 1/Le]||u; 0 —

[l
/\
7~ N\

|
—

o | =
N
VR
—
(‘D‘X
N S
\/
f_J%\
(G
_
0]



MINIMUM POTENTIAL ENERGY METHOD

e Apply the minimum potential energy method to a bar finite element,
assuming:
— Displacement field:

u(x) = (Ni Nj>{3;}

— Strain field (constant values are expected over the entire element, because the
derivatives of those interpolating functions are constant values):

o) Sl

J

— Virtual strain field: ((dN-
] o

<§8(X)>=&5U(X)=<§Ji 5Uj>< de S
dx




MINIMUM POTENTIAL ENERGY METHOD

e Apply the minimum potential energy method to a bar finite element,

assuming: @:@

voI.um-e
— The existence of only one finite element (total volume equal to one finite element
volume): ( 8Ni )

fre X | 8N.\ u.
AlET (s &) OX /GNI j gy = (su)E
flelon a2 (B oot

L OX
_T((aNi aNijdX T(@Ni @Nj]dx_
ox ox ) ox ox | |y

u, o HEA 0 _(SuME
e, < ,> LI ON; ON. dy Lf ON; N » {uj} (SU){F

'Pb 0 OX  OX - OX  OX ]




MINIMUM POTENTIAL ENERGY METHOD

 Apply the minimum potential energy method to a bar finite element (cont.)

7
0

\

— The stiffness matrix for bar element will appear.
[ Le Le ]
el @),
EA 0Le ° ° 0Le ° ° { I}:{F}
1 1 1 (1
[l [l
- o\Lel Le o\ Le\ Le |

eAl Le _Le_Ju‘l:JF‘l
L .




MINIMUM POTENTIAL ENERGY METHOD

 Apply the minimum potential energy method to a bar finite element (cont.)
— Assuming more elements over the entire volume, the assembling is necessary.

fav="3 | [.dve

Total Elements [ Element
Volume _Volume

— Assume different external load, such as, distributed load. In this case, the virtual
work due to distributed load, may be calculated according:

W = j b(x).{¢u)dve



MINIMUM POTENTIAL ENERGY METHOD- case 1

Assume ONE finite element to mesh this structural element, of uniform cross

section area A, constant elastic modulus (E), submitted to the loading
conditions.
§ bix)

H —b——h——h——-—@ l-——l-—.-—h—% P_..___-
2 X, U
R l \ A
r-...\,._ —

Assume the following interpolating functions.




MINIMUM POTENTIAL ENERGY METHOD- case 1

Applying the minimum potential energy:

: : b(x)
— The algebraic system is: R ﬁ___,ﬂ.__@ ,i_._* P
_}2 T Xu
k -

Ae AE) [k
L L {1}:< 2’|
AE  AE I|u, p+b(£)
L L | ( 2"

— Imposing boundary conditions:
e U1=0

— Snluvino cuctam nf ONF anaiiatinn:
JU'V"'B JYJ\.\..IIIUI s IV b\'luut.lull.
[ ]

bL
(P + jL Solucién MEF
u, = —2 M, = "'{2”
2 AE u,= L.I:”:D (D 5
2

\

— Solution inside finite element:

o

X

L

) ()

U
u,

|

(




MINIMUM POTENTIAL ENERGY METHOD- case 2

Assume TWO finite element to mesh this structural element, of uniform cross
section area A, constant elastic modulus (E), submitted to the loading
conditions.

(%]

b
— — 5= 5= = F
@' @ o U
N A
I.-—

SRR AR

(11
N1 NE
Shape functions for each element: : 1! _; i ! "
U Uy
@ X
NIEI N[EI
i
I |
u:‘z] ] | u-:;:
[2) 2 3"", 3 1z]
1 L x!
: el
. — el el
The expected solution: - —21 N,
Solueitn MEF -
| Uy
u,=0 ’luz E
T ® 2 @ 3



MINIMUM POTENTIAL ENERGY METHOD- case 2

Assembling stiffness matrices and load vector:

KL K
K;l K;Z + I<121
O K122

0
Ky,

2
Kzz_

Recall virtual work due to distributed load:

Us

§

u, |

R+bL/4
bL/4+bL/4}
P+bL/4

> =

.

> restart; with(linalg);
> with(LinearAlgebra);

AE __AE
(L/2) (L/2)
__AE AE N AE  AE
(L/2) (L/2) (L/2) (L/2)
__AE AE
(L/2) (L/2)
- bix)
R /«“4— --__'_“-"““ﬁ—"‘"—"‘.—"“_"l i - -
é 0] @ T %, %

A

|
t -

e Solve Algebraic system of equations, using MAPLE 13 symbolic Manipulator:

> K:= Matrix(2, 2, [[AE/((1/2)*L)+AE/((1/2)*L), -AE/((1/2)*L)], [-EA/((1/2)*L), EA/((1/2)*L)I]);
> F := Matrix(2, 1, [[(1/4)*bL+(1/4)*bL], [P+(1/4)*bL]]);
> B := MatrixInverse[GF27](K);

>U :=B.F;



MINIMUM POTENTIAL ENERGY METHOD- case 2

e Solution for displacement: . ;N_**di:_ﬁ___* P
= L -
0
{F}:JL po3pL |
2EA 4
L[2P+bL]
[ 2EA )

e Reaction Solution:
R=(-P+bL)

e Analytical solution:

u(x) = ElA{— b’: (P +bL)x}



MINIMUM POTENTIAL ENERGY METHOD- case 3

e Convergence analysis for the case of constant “b” and P=0.

. . § bix)
— Analytical solution: R §4++,® e R %
—_——
2 %, U
b

2 3 | A
u(x) = —| -2 (P bi)x - '
EA| 2 " "
i P
é 0] @ X,u

— Comparison of displacement solution for FEA with 1 and 2 FE.

EAu I~ ' L
2
. A
0,50 .
Z|5
E‘
0,25 - o0&
E i
a1
=
T
V8]
- — ! —_— - -
] 0.5 1 xSl 0 0,8 1 x/fl

——— Splucidn con 1 elemento de dos nodos

o ----- Soluciin con £ elementos de dos nodos
= Solucidn exacta




VARIATIONAL METHODS (BAR ELEMENT)

Continuous members:

— Linear interpolating functions to approximate solution for a column in a four-story
buiding.

load load
L |
K S

4)

v Ve

b L NN\ N 74
3)

o 1R

NNAVAN N\ N 74
(2)

ool vz

] ] N 74
(1)
L 1]

90 Ociga ¢ - Q@‘?Qﬂ <



VARIATIONAL METHODS (BAR ELEMENT)

Approximate element solution, linearly.

u®=c, +c,Y

Displacement field is valid for node i to node j.
u:ui |n Y:YI Ui=C1+C2Yi
u=u; In Y=Y, U, =C, +C,Y,

Lets assume that node displacement ( ui, uj) are well known and try to find
nodal parameters (c1 and c2), inverting the solution:

uY.—u.Y. U=
c, = i’ jli C,=——
YJ-—Yi Yj_Yi

Solution for element displacement (1%t order): T

uY.—-uyY U.—uU,
ue: 1] J I+ J IY _l_y_
Y, =Y, Y, -Y, '

[Moaveni]




£

VARIATIONAL METHODS (BAR ELEMENT)

The polynomial approximation may be the simplest solution (cont.)
— Substitute the nodal parameters in to the assumed 1st order displacement field.
— The interpolation functions (Ni, Nj) will appear (in global coordinates).

— Those functions are also called shape functions, because they may be used for
interpolate the geometry coordinates.

. (Y=Y Y -, |
u = U, u,
Y, -V, Y, -V,

YY

N; =

Y. -Y.
-Y.

N

[Moaveni]

NjY
Y=Y |

SR T TR (ORA el B R T



VARIATIONAL METHODS (BAR ELEMENT)

The interpolation functions may be determined in local coordinates:

— Substitution of variables: Y =Y, +y (0<y<lI) Y
A
v Y :Yj—(Yi+y):1_l |
| | | | Y, — 4l
Y -Y, (Yi + Y)_Yi y T
| | |
1 "
Yi___.
s, i
A
y
N =1- |
! I 1 NJ:IX
Y=:):>NNi=; y=0= N, =0
) | y=l=N,=1
T — X { 1 » X
X, X, X, X,
N,=1 N,=0 innodel
N,=0 N,=1 innode?2



VARIATIONAL METHODS (BAR ELEMENT)

 Apply the minimum potential energy method to a bar finite element:

11

EA Le Le Ui _ Fi
11 F;
| Le Le |

e Assemble the solution.



VARIATIONAL METHODS (BAR ELEMENT) - case 4

e Determine vertical displacements in each story of a four

story bUIldlng 30,000 1b 30,000 1b
5
e Determine stress at elements, knowing that E=29E6Ib/in? AV | 74 T r
e A=39.7in? 25,000 b B(;” 250001 15 ft T

— -

. . s
[K]e:[KT:[K]ZZ[KF:[KF:E{]- }:39.7X20E6{1 1} H e |
-1 1 1.5x12 -1 1 250001b|| 3) [[25.0001b 15 ft

1 0 0 0] F R 3 i
-1 U U 1 = Q [ ] 7 T
 1+1 -1 0 0 F2 50000 25000 1b|| (@) [[25.000ft 15 ft
[K]°=6.396E6 0| -1 1+1 -1 0 {F, t =150000 ¢ 2 [} |
of 0 -1 141 -1 F,| |50000 s D
0 0 0 -1 1_ \st \60000/ fl(in (;) Tn
— Displacements: ) . .__o-;_%0_*‘-_.__0;._%.0,
ul O O L= L S Y o o [

u,| [0.03283

Uy r=40.05784

u,| [0.07504

us] |0.08442]

@ — Axial stresses determined from:

E(u; —u,) o, = 5289 o, = 4029 o, = 2771 o, =-1511 |Ib/in?]

b

Ge:



VARIATIONAL METHODS (GENERAL ELEMENT)

e  Minimum potential energy theorem:

Guﬁuau

— Assuming the interpolating functions Ni, Nj

u® = N;u; + Nu,

— Strain field:
ou o ul o
v [N u +Nu = W[|\|i+Nj]{uj}:W[N]{u}:[B]{u}

— Internal energy EQUALS external work:

du=dwe [[Efoefe)dv=(a)iF} [KJul={f]

volume

@ — Solution:
iob u

I
|
A

|
H
~—
=
N——
~
q
——
Il
L |
O
—_
M
——
Il
—
O
—
L |
o
—_
c
——



VARIATIONAL METHODS (BEAM ELEM)E\NT)

e Henky Mindlin Theory:
— Longitudinal displacement: u
— Vertical displacement : W (15t main variable)

— Transversal coordinate: y
— Section rotation : 0 ((2"¥ main variable).

* Hypotheses: u(x,y) =u(x) - ySin(x)
— Rigidy body in transversal direction; W (X, y) =W (x) - y[l— COSQ(X)]
— Cross section remains plane and not warped;
— Before deformation, cross section normal is orthogonal;

e Additional hypothesis to small displacements (Linear theory)

— Due to small rotations, sen(0)->(0), while cos(0)->1
— Axial displacement depend on cross section rotation.  U(X,Y) =uU(x) — y&(X)

W(x,y) =W (x)

ipb




VARIATIONAL METHODS (BEAM ELEMENT)

e Euler Bernoulli theory: - ~.
/ .

— Longitudinal displacement: u // | \\\

— Vertical displacement : W (main variable) : ’7\?% /\

. \‘\~ ! \\ /

— Transversal coordinate: y (— /
-,

— Section rotation : W’ (derivative of main variable). N

e Hypotheses:
— Rigidy body in transversal direction;

— Cross section remains plane and not warped;
— After and Before deformation, cross section normal is orthogonal;

e Additional hypothesis to small displacements (Linear theory)

— Due to small rotations, sen(0)->(0), while cos(0)->1 .
— Axial displacement depend on transversal displacement.  U(X, Y) = u(x) — yW'(x)

W (x,y) =W ()
&
o



VARIATIONAL METHODS (EULER B. BEAM ELEMENT)

e To determine the equilibrium configuration of a uniform bar submitted to
external loading:

— A displacement field is required to satisfy the minimum potential energy.
e The polynomial approximation may be the simplest solution:

— For example assume 3rd order approximation (Hermite polynomial, C1 type):
W (x) =b, +xb, + x°b, + x°b,

0(x) = AW () _ b, + 2xb, +3x°b,

dx
— In matrix formulation. z A
b, tWi Twi
W 1 x x* x°||b, ™oL o - 6] ;}
= < > y==S)"4""¥%F =—"7F -
0] |0 1 2x 3x*||b, 1 — X
b, Le
— Expand to nodal degrees of freedom "1 0 0 0]
W) 1 0 0 07b) % lo 1 0 o ‘g’i
b -3 -2 -3 -1 :
6. 0 1 O 0 [|b 2\ _ !
'@ SR L N
i Wil |1 L L|b 3 ST S e
’ j e e e 3 b 2 1 -2 1 0.
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VARIATIONAL METHODS (EULER B. BEAM ELEMENT)

 The polynomial approximation may be the simplest solution (cont.)

— Substitute the nodal parameters in to the assumed 1st order displacement field.

— The interpolation functions (Ni, Nj) will appear.

— Those functions are also called shape functions, because they may be used for
interpolate the geometry coordinates.
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o) lne) e
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VARIATIONAL METHODS (EULER B. BEAM ELEMENT)

e Apply the minimum potential energy method to a beam finite element,

assuming:

— U and V may be represented by null displacement variables;

20 = [(o)loe}- [(2)oT o)

_ Vol _ Vol _ _
< 0 0 9 0 0
OX OX
( E vy ) 0 g 0 i 0
P % 2
) gzz L — aZ V _ 82 O {5(9}:
2¢ [ |0 O |0 0 OX  OX OX OX
Nlay o CW |y & 0w
25, | X oy ox
2¢& 0 S 0 9 9
L ZX ) az ay az ay
R A
L 0z OX | | 02 Ox |
i 2e =W _ ()—<(‘_62X+ﬁJ (1_ﬂ 3x22j (6_Z<_6>§2j (—ZX 3><22J>
Le I—e I—e Le Le Le Le Le




VARIATIONAL METHODS (EULER B. BEAM ELEMENT)

 Apply the minimum potential energy method to a beam finite element (cont.):
— The work of external forces (F — concentrated forces, q - distributed forces).

Sup Sup
I<Fk>{5k}: <N>k{Fk}
Sup k=1 é\Ni
I<q>{5k}:f<Nl N, N N4>q :\:3 dX:<5VVi 06, W, 5(9j>><q><
Su 0 J
p 00,
GIN/m] P [N] M [Nm]

A%%ﬁttllf I | |
g Savem ] s o = e

@ ﬁ aL./2 ﬂ ﬂ P/2 P/2ﬁ ﬂ M /(2L,) 3 /(ZLE)ﬂ
iob & G DG »

qL?/12 ql/12 PL/8 PL,/8 M /4 M /4




VARIATIONAL METHODS (EULER B. BEAM ELEMENT)

Apply the minimum potential energy method to a beam finite element (cont.):

M =W < [(e)[DHoet= [(F)o )+ [{a)
Vol Sup Sup
W, oW,
I<8N1 oN, ON, 6N4> Z [D]t<aN1 oN, ON, 6N4> 3, | ol =
un | OX OX OX ox [ |W; OX OX OX ox | [OW,
0, 50,

=(oW, 56, W; 46,)xqx

I
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VARIATIONAL METHODS (EULER B. BEAM ELEMENT)

 Apply the minimum potential energy method to a beam finite element (cont.):

Vol
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VARIATIONAL METHODS (TIMOSHENKO BEAM ELEMENT)

Bending moment and shear are defined according to figure.
— Axial stress variation in “y” is linear (exact solution).
— Shear stress will be constant in “y” (approximate solution).

The polynomial approximation may be linear, because the main variables are
independent.

Most FE software use beam elements from Timoshenko beam theory, which
includes deflection due to shear strain, as well as that due to bending strain and
rigid body motion.

If the length of a beam is short (similar to its depth) then this assumption leads to
better results.

The Timoshenko finite element may revert to a Euler-Bernouili finite element if the
“shear area” (cross-secti N@%ﬁnd ear.deformation) is not specified
by the user. H




VARIATIONAL METHODS (TIMOSHENKO BEAM ELEMENT

To solve the problem of shear stress distribution:

— The deformation energy should be correct in accordance to the theory, considering
the shear stress equal to:

Ty =a G Yy
— Shear should be determined in accordance:

V =AaGyXy=A*G Yy

e Where a is the shape factor and A* is the reduced area.
* o depends on the cross section area.

A




VARIATIONAL METHODS (TIMOSHENKO BEAM ELEMENT)

* Interpolating functions: \:.Jﬁ |
— Assume linear function for both main variables. \(\ | e
e Displacement field: =
b N T
w(x)=b +bx=(1 x)q° optan s
b2
b, ,
O(x) =b, +b,x=(1 x)
b, fw fw
pal 0j ‘)
e Assume nodal displacement variables: V\/‘ X

W, !Qil wiE) = N(E)w, + N,(E)w,
Wil 1Y) O(E) = NE)©, + N,(£]6,

e Interpolating functions in local coordinates or in natural coordinates:

W<X>=<1 L>{VVX}<N NJ{XVV‘\ N, = (1-¢) I

s

@ X i | L. 1 + i
ipb/ 0(x):<1 L>{Z’}:<Ni Nj>{g'_ Nz—z(é 1) i ‘1
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VARIATIONAL METHODS (TIMOSHENKO BEAM ELEMENT)

 Displacement field:

— Axial displacement due to bending: u(x) =-yx@(x)
— Transversal displacement: W(X) — W(X)
— Rotation: 0(x) = 6(x)
e Strain field which produces strain energy:
- ou 00(x)
— Normal strain: Ey=—"=—YX
OX OX

— Shear strain:
dw du dw ou dw
Q/Xy — —|— — -|— —

-0(x)
dx. dy dx oy dx

e Stress field:

e Apply the minimum potential energy method to a beam finite element:

&

lpb oU = oW



VARIATIONAL METHODS (TIMOSHENKO BEAM ELEMENT)

(20)- aw

= | O X 08 + T, Xy, AV
Vol

e The deformation energy should consider :

— Normal strain in “x” direction;

— Shear strain in “y” direction. oJ = ..<O'>{56‘} dv
Vol

= | 06,4 X Oy + 07,y X T, dv
Vol

e Approaching virtual strain field and also the real stress field in discrete format:
ERENE
\ dx dx /L50jJ

~dN\ [ 5
57/xy =%§N-5¢9(X) :<dd|\)|(| dXJ >{M}<N' NJ>{59}

XX

o€, = yxiﬁﬁ(x) =—yX
dx

J

_ B xa@(X) . V) dNi Nj Hi
Gxx_E( y ox )_E( y) <dX dx >{91}

&2 dw(x) N, dN\ [w 0
oo romo[ el (T Gff-iv mfg)]




VARIATIONAL METHODS (TIMOSHENKO BEAM ELEMENT)

e Approaching virtual strain field and also the real stress field in discrete format,
using :

t
— Assuming nodal variables: <Wi 6w €j>

— An expansion for vector dimension should be applied.

S w,
N, dN,\ |68 N, N\ |6

e, =—yx(0 —~ 0 Lleq o,=E(y)x(0 —- 0 .
oo yx< dx dx> o, (y)< ix o dx ||,
50 _ 0,

o, rWi

dN- dN 50 dN. dN. 0

ov. =(—L _N. I _N.)ed =G|{— N, L N,
& <dx X J> W, o <dX ' dx : .<Wi
00 91_

 The deformation energy may be calculated in discrete format :

M = j 08, X O + 0y, XT,, AV @

Vol




VARIATIONAL METHODS (TIMOSHENKO BEAM ELEMENT)

The deformation energy may be calculated in discrete format : oW

0
dN, W
— | dN.\ | @
= [-yl W helan 56 o 5<9j>><E(—y>< %ﬂx 0 dxj>. o (v
Vol dNJ )
o ’
X
o,
dx dN \gi
—N. _ , i
+j te(dw, 56, aw, 59.>xeﬂ —N;, —L —N;)eq "‘dv
BT A i B A
dx 0.
~N, .

* Assuming any virtual nodal variable, (s, 56, &w; 56;) consistent with
boundary conditions.

0 [ dN;
dN, Wi dx W,
Le - | dN .\ | 6 Le —N, . dN . o,
M = [E[ y*da) 9 N 5 dx+ [G [ dA] 4! Ny Ty dx

0 A dlc\)l dx dx /| W; 0 e ||\ dXx dx W

_i 6, dx 0.

dx —Nj) j

It is not necessary to use natural coordinates, because integrals may be

=

_ calculated exactly.
PO



VARIATIONAL METHODS (TIMOSHENKO BEAM ELEMENT)

The deformation energy may be calculated in discrete format :

El
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VARIATIONAL METHODS (TIMOSHENKO BEAM ELEMENT)

e Same procedure as for the Bernoulli beam element provides the following

stiffness matrix:

K

 To avoid shear locking, a mixed interpolation approach may be used, or instead

Timoshenko

=kGA

1]?

_26

EI
JL GAh

a rigorous derive interpolating function:

K

exact
Timoshenko

1
2
1
h
1
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h
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THEMATIC EXERCISE WITH ED-Elas2D

e http://www.cimne.com/tiendaCIMNE/MenuSoftEdu.asp (free demo version).

e Simply supported beam with two finite elements, submitted to mid span load.
— Material definition;

— Boundary conditions definition;

" rectangulo o arhitrario £ ol miGmero |2_ ~Apoyos —Elasticas
eometria Fisica Grados de libertad restringidos
ArEs A IU i % W Translacidn [ Potacisn ¥
Anchura B I':' fem] e T e ID [emd] ¥ Translaciény [ Fotacisn %
atura H In— ezl vormorto de raris =17 [emd] W TranslaciénZ [~ Fotacion 2
Momento de Tarsion J I':' [cm4] alares I
— Material Caloular . . . om — DSOS
tMadulo de Young E 21EN1 [Mizm2] V o V Ok ggﬁ _____ —
Midulo de Cortarte G [0 [Niem2) %%g xcancel I .
Coefficierte de Poiz=on IU [-1 xlzanCd _{
Pe=o propio
( Densidad ID— [kg # cma3] alares |
Soft

— Stiffness for each element, in global coordinate system.

T [ 2 [ 3 | &« H T ] 2 [ 3 ] «a P
A.31E+010[2.15E+010[f4.31E+010 2.15E+010 4.31E+010[2.15E+010F4.31E+010f2.15E+010
2.15E+010[1.44E+010][2.15E+010]7.18E+009 2.15E+010[1.44E+010-2.15E+010]7.18E+009
[4.316+010f2.15E+010[4.31E+010]F2.15E+010 [4.31E+01002.15E+010(4.31E+010[-2.15E+010
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THEMATIC EXERCISE WITH ED-Elas2D

e Element1  Imposing boundary conditions:
: = [ : o
: =[] 4 o
e Element2 e Deformed shape:
1 1 2 3 4 5 ] ? T j’ i’#\ )43
‘ o] [#] * Transverse internal effort:
e Assembling % T T
. =] [ e Bending moment effort:
: -]
' =] [ L LA ;
> oo S
Dy ] o)




THERMAL ANALYSIS - 2D

e Thermal balance:
— Heat flux in/out with respect to infinitesimal area;

— Internal energy variation;
— The law of Heat Conduction, also known as Fourier's law, states that the time rate
of heat transfer through a material is proportional to the negative gradient.

Z O — Z O =AU | |au = pC(dz.dy.x)%-

o1 o1 oTY _(,eT) . a[(,eT
A= lEl(dy'X){_@ELdz(dy'x)} (lgjmz_(l azjfaz Kl azudZ




THERMAL ANALYSIS - 2D

Boundary conditions:

— Dirichlet: prescribed temperature:
— Cauchy: heat flux (convection, radiation): Z
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THERMAL ANALYSIS - 2D

e Weighted Residual Method:

— If the physical formulation of the problem is described as a differential equation,
then the most popular solution method is the Method of Weighted Residuals

— For the energy equilibrium equation (simplified format): L(T *)+U =0
— Assume T as an approximation to temperature. |_(T)+U =0

— Assume y as weighting function. The number of weighting functions equals the
number of unknown coefficients in the approximate solution. There are several
choices for the weighting functions:

e Galerkin’s method, the weighting functions are the same functions that were
used in the approximating equation.

j w(y,z)[L(T)+U]dv=>" j w(y,2)[L(T)+U]dVe=0

ele e



THERMAL ANALYSIS - 2D

Weak integral formulation:
— Increases weigthing function differentiability;
— Reduces Temperture differentiability

> [vr0] 22 )+ 2 (a2 ) pe T ave-ocs

ele ve

ZH‘//(Y 2).div(V) dve - > Jw(y, Z)pCaa—dVe 0=

ele e ele ve

IleguV)dVe ZjVograd w)dve->" _[r,u(y z)pCaa—dVe 0=

ele Ve ele ve ele ve

ZSEWoﬁdSe—ZJVograd(t//)dVe—Zjw(y,z)pCEdVe:0<:>

ele ge ele ve ele ve

Ty o L0T\ (0w oy oy
Z§gy(ﬂ ny + A nz]dSe Zj<01 , 82> <8x v az>dVe

ele ge ele ve

—ij(y,z)pc%dVezo

ele ve



THERMAL ANALYSIS - 2D

N Ui
Temperture approximation: 4 j 3 3
nne R
T ele _ ZTI Ni >
i=1 1 2 5 1 2
Geometry approximation é:

Local coordinate system (natural coordinates) should be used to facilitate
numerical integration.

(N)=2(a-2)i-n) @reNion) (@eéaen) @-2Nien)

Galerkine approximation:

nne nne

y =ol =§<Ni>-{5ﬂ}=2<5ﬂ>-{'\h }

i=1
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THERMAL ANALYSIS - 2D

Solution for integrals, introducing Jacobian:
— Involume: | f(y.2).dy.dz = [ £[y(¢,77) 2(&, m)]det[I ]ddy

— In boundary: Ve Vr

jf(X)ds jf[x(g n)]\/(ggjz (2;) dsr

Jacobian of coordinate transformatlon from Natural to Cartesian:

— Assuming the interpolating function to geometry.

(A ) T A g’ nne ]
Y |0 < — Zﬁx Y,
) 69‘ ) 0z ( Oz e aNi [J]— ; i—1 66
ay i L S| —= —XZ || - i nne aNI
[on) Lon on Jloy] Son " Fon ]

For planar element, the Jacobian determinant is numerically equal to the area
of the finite element.




THERMAL ANALYSIS - 2D

e Numerical integration:

— Gauss method: In numerical analysis, a quadrature rule is an approximation of the
definite integral of a function, usually stated as a weighted sum of function values
at specified points within the domain of integration (Gauss points).

* “M” integration points are necessary to exactly integrate a polynomial of degree “2M-1""
* Less expensive
* Exponential convergence, error proportional to (1/ 2M )2M
— Newton Cotes method: (Less used).
* “M” integration points are necessary to exactly integrate a polynomial of degree “M-1""

* More expensive

w

\4
\ 4

]——[]—% N

+1+1 npg  npg N
Q II f (5’ U)déd n= Z Zwi 'Wj f (é:l ’77] ) Johann Carl Friedrich Gauss, (1777-1855)

ipb -1-1 igauss=1 jgauss=1 German mathematician and scientist



THERMAL ANALYSIS - 2D

Numerical integration:

— Example of integration in one dimension.

+1

J

-1

f(g)z Zn: f(é:i)xwi

np=1

+£; W;

0.0 2.0

0.5773502692 1.0

0.774596697 0.5555555556
0.0 0.38888888589
0.8611363116 0.3478548451
0.3399810436 0.6521451549
0.9061798459 0.2369268851
0.5384693101 0.4786286705
0.0 0.5688888889
0.9324695142 0.1713244924
0.66120935865 0.3607615730
0.23861915861 0.4679139346
0.9491079123 0.1294849662
0.7415311856 0.2797053915
0.4058451514 0.3818300505
0.0 0.4179591837
0.9602898565 0.1012285363

0.7966664774
0.5255324099

0.1834346425

0.2223810345
0.3137066459
0.3626837834




THERMAL ANALYSIS - 2D

e Solution:

7
0

\

— System of algebaric equations.

ICANNCH 1Ry it ORI L

ele Vref




THERMAL ANALYSIS — 2D — ED-Poiss

Thermal analysis in two dimensions:
— Imposed temperature for input and output.
— Imposed null heat flux at the other boundary.
— Using iso-parametric finite plane elements

T=20 [°C]

T=200[°C] /

i




THERMAL ANALYSIS — 2D — ED-Poiss

Coordenadas Globales

Funciones de forma

Coordenadas Locales

Kll K12 K13 KM Célculidelcoeficiente Kij

e ap ’
K21 K22 K23 qu Kij :;IEIBiDBj |I[E]| prq: K[é 0y
K31 Ksz K33 KK J
K(’I K“Q K‘ﬁ K@;

121 1221 (.2
Ki Kyt Ky

1w w]

Matriz de deformaciones [B)

T_ | &M
B1_{ ox

Componentes de la matriz
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o
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e Assembling matrix:

— Two first elements: 1234 nalalr ok |

‘|o\ . X Cancelarl
'|" ] 2 fyuda |
=

w‘i Hurm.

L3R —

di

Matriz de rigidez local

K, K. K,
K, K. K,
K, | K. |K,

14

7~ | 7S

26
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M atriz de rigidez global

— All elements with boundary conditions:

Mumeracidn global: 10
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I
=
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THERMAL ANALYSIS — 2D — ED-Poiss

e Post- Processing:
— Heat

19921

179.47
15974
140
119.47
99.737
a0
59.474

38.737

— Flux

Min: 377,336
Max: 1265.62

1261.7
1164.3
106E.9
969.53
868,23
770.e3
E73.43
57214
47474




THERMAL ANALYSIS — 2D — ANSYS

Thermal analysis:
— Steady state conditions:

— Thermal conductive material: Steel (Kxx=Kyy=45 [W/m2K])

— Six finite elements: Plane55 (Isoparametric)
* 4 nodes
e 1 degree of freedom per node

4

T=20 [°C]

T=200[°C] /

I




THERMAL ANALY

Q)
)
c
Q)

e Chaccinn fila frarm ANCVC: ImnnAarfant +A rarn
= DCTOSIUINT THT TTUITT ANOTO. ITTTPUINLadlit LU 1cLvu

/BATCH

/COM,ANSYS RELEASE 7.0 UP20021010  22:30:20 10/09/2003

/input,menust,tmp,",,,,,.,.100,1

/GRA,POWER

/GST,ON

/PLO,INFO,3

/GRO,CURL,ON

/REPLOT,RESIZE

!*

/NOPR

/PMETH,OFF,0 LSTR, 2, 7

KEYW,PR_SET,1 LSTR, 7, 12

KEYW,PR_STRUC,0 LSTR, 3, 8

KEYW,PR_THERM, 1 LSTR, 4, 9

KEYW,PR_FLUID,0 LSTR, 9, 13

KEYW,PR_ELMAG,0 LSTR, 5 10

KEYW,MAGNOD,0 MPTEMP,,,,.., LSTR, 10, 14

KEYW,MAGEDG,0 MPTEMP,1,0 LSTR, 1, 2

KEYW,MAGHFE,0 MPDATA,KXX,1,,45 LSTR, 2, 3

KEYW,MAGELC,0 K1.0.0.0 ' LSTR, 3, 4

KEYW,PR_MULTI,0 K 22,00, LSTR, 4, 5

KEYW,PR_CFD,0 K,3,4,0,0, LSTR, 6, 7

/GO K,4,6,0,0, LSTR, 7, 8

I* K,5,8,0,0, LSTR, 8, 9

/com, KGEN,2,P51X,, , ,2,,5,0 LSTR, 9, 10

/COM,Preferences for GUI filtering JAUTO, 1 LSTR, 13, 14

/COM, Thermal /REP LSTR, 11, 12

r FLST,3,2,3,0RDE,2 FLST,2,4,4

/PREP7 FITEM,3,6 FITEM,2,10

I* FITEM,3,-7 FITEM,2,3

a KGEN,2,P51X,,,,2,,5,0 FITEM,2,14

ET,1,PLANESS FLST,3,2,3,0RDE,2 FITEM,2,1

r FITEM,3,9 ALP51X

FITEM,3,-10 FLST,2,4,4
KGEN,2,P51X, ,, 2, ,4,0 FITEM,2,11

FITEM,2,5
FITEM,2,15
FITEM,2,3
AL,P51X

LESIZE,ALL,, ,1,,1,,,1,

CM,_Y,AREA
ASEL,,,, 1
CM,_Y1,AREA
CHKMSH,'AREA'
CMSEL,S,_Y

l*

MSHKEY, 1
AMESH, Y1
MSHKEY,0

l*

CMDELE, Y
CMDELE, Y1
CMDELE, Y2

l*

/AUTO, 1

/REP

APLOT

FLST,5,5,5,0RDE,2

FITEM,5,2
FITEM,5,-6
CM,_Y,AREA
ASEL, , , ,P51X
CM,_Y1,AREA
CHKMSH,'AREA'
CMSEL,S,_Y

l*

MSHKEY, 1
AMESH, Y1
MSHKEY,0

l*

CMDELE,_Y
CMDELE, Y1
CMDELE, Y2

l*

/PNUM,KP,0
/PNUM,LINE,0
/PNUM,AREA,0
/PNUM,VOLU,0
/PNUM,NODE, 1
/PNUM,TABN,0

aoan inniite
sc 11 |JU L.
/POST1
/JEFACE,1
l*
PLNSOL,TEMP, ,0,
JEFACE,1

l*
PLNSOL,TF,SUM,0,
JEFACE,1

l*
PLNSOL,TG,SUM,0,
I*

/VSCALE,1,1,0
|

l*
PLVECT,TF, , , ,VECT,ELEM,ON,0
JEFACE,1

1*

/PNUM,SVAL,0
/NUMBER,0

PLNSOL,CONT,STAT,0,
JEFACE,1
1%
PLNSOL,TF,X,0,
/60 JEFACE,1
D,P51X, 200, ,, TEMP, , ,,, .
FLST,2,3,1,0RDE,2 PLNSOL,TF,SUM,0,
FITEM,2,9 JEFACEL
FITEM,2,-11
!*
/GO
D,P51X, 20, ,, TEMP, ,,,,
LSWRITE, 1,
FINISH
/soL
/STATUS,SOLU
SOLVE
FINISH




THERMAL ANALYSIS — 2D — ANSYS

Post- Processing:
— Heat

— Flux

MNODAL

SOLUTION

STEP=1
sUB =1
TIME=1

TEMP

(AVGE)

RSYS=0

SMN =20
SMX =z00

20
40

ocT 9 2003
23:00:43

a0
80

1o0

120

140

160

180
200

VECTOR

STEP=1
SUB =1
TIME=1
TF

ELEM=3
MIN=49
MAX=12

1.98

30

ocT 9 2003
23:02:55

o

491.987

573.984

655.982
733

819.978

901

-973

983

973
1066

1230




INTERPOLATING FUNCTIONS 1D

e Linear functions (global coordinate system)
— Determine temperature distribution in a one-dimensional fin, for the positions X=4
and X=8 [cm].
— Assuming the mesh and temperature at nodes 2 and 3.

e Assume:
. . X Tiiq = 18°C
— Linear behaviour. Tise=0°€C T2= T3=34
e _B
T"=c,+¢C,X
R O B ) N (3) :
— To know temperature at nodes:
T . [N N {TI} }+2cm+‘4—30m -;Iﬁ 5cm -;I
[ i T
TJ ' Y
. Actual temperature profile
— Temperature over each finite element .
base
X X X X \ Approximate temperature profile
Te=| 1L "~ T4+ 221 T
— Solu on:5 . . i
T :( j41 ( j34 ‘X3 2) @ |
5 (1)

[
I\J
base
t\x
Y
X
S

2 TX=8=(—1O_8j34+(8 55j18 24.40C —

R
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INTERPOLATING FUNCTIONS 1D

-
-

Quadratic functions (global coordinate system)
— Increase accuracy of solution.

Assume : ]
T, |
— Quadratic behaviour: T’,‘ I

—

e 2 |
T =c¢c,+¢c. X +C, X I ko
1 2 3 I ) W '
X X X;
— To know temperature at nodes: /2

2
T=T = X=X, T.=C, +C, X, +C, X,

T=T, = X =X, T, =C +C,X, +C,X,°
T=T;= X=X, T, =C +C, X, +C,X 7
— Temperature over each finite element: N, = %(X - X, )(X - X,)
T°=N,T,+N;T,+N_T, 5
rTiw NjZI_Z(X_Xi)(X_Xk)
T*=[N. N. N,[KT.} -4
NN N N =X - %, )
\k)




INTERPOLATING FUNCTIONS 1D

Cubic functions (global coordinate system) A
— Increase accuracy of solution.

Assume :

|

|

— Cubic behaviour: |
f

e 2 3 THJ ‘
T =c,+C, X +C, X"+, X 1
\

\

— To know temperature at nodes: I

T=T= X=X,
T=T,= X=X,
T=T,= X=X,
T=T,=X=X,

— Temperature over each finite element:

i [Moaveni]

2 3 4
Ti =C, +C, Xi + Csxi + C4Xi %—m—--q—m—-%—m—ﬁ

T, =C, +C,X, +C, X, +C, X, = f ~

T =c,+C, X, +C, X, “+¢,X_°

2 3
Tj =C1+CZXJ-+C3XJ- +C4Xj

9
N. X=X AX =X X=X
TP=N,T,+N T, +N, T, +N, T, = X=X XXX = X)
e Y 9
T N =25 (X = XX =X X = X,)
.
To=[N, N, N, N J{E N, =25 (¢ =X X=X XX = X,)
Tk
- 27
\Tm) N, = E (X—Xi)(x—xj)(x—xk)
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Lagrange

LAGRANGE INTERPOLATING FUNCTIONS 1D

interpolation

coordinate system)

functions

(global

— Advantage to increase accuracy of solution.

— Advantage

parameters .

Assume :

of no need to determine nodal

— To generate shape functions of an (n-1) order
polynomial.

If n=3, polynomial order=2.
If n=4, polynomial order=3.

— Shape functions determined in terms of product of
linear functions:

N;

1=1(j#1)

()

x) = j
b= 11 (% - X )
Interpolating function at node
1 and O at other nodes.

{o:
I

takes value equal to

A [Moaveni]
|
Ty |
" |
?}: e |_ e “l' e
| | |
| | |
li | k lj
L @ (] > X
(/2>
le - .
"
.
A
[Moaveni]

e {[3— {3 (3 —

- { -




LAGRANGE INTERPOLATING FUNCTIONS 1D

system):
— Assume n=3;
— polynomial order=2

Lagrange interpolation functions (global coordinate

e Nodei B ;;(.,HX}
X)) 2 T
A Oy (e ey P
e NodeK
N, =N, = \X Xl)()( —_X3) :(X_Xl)(x_x3)=_24(x_xl)(x_xs)
(X, =X, (X, = X5) (lzj(_lzj !
e Nodej
(X - X)(X X) (X =X X =X,)_ 2
Nj:NS | =—2(X—X1)(X—X2)
o NG T

Po



LAGRANGE INTERPOLATING FUNCTIONS 1D

e Lagrange interpolation functions (natural coordinate system):

— The same previous advantages. Ny [E] MNalSH
— One more advantage for numerical integration. - ‘_ :' . :
e Assume: : -F :
— To generate shape functions of an (n-1) order polynomial. ¢ ™
e |f n=3, polynomial order=2. 5 _5 X — XC
e If n=4, polynomial order=3. L(e)

— Shape functions determined in terms of product of linear functions:

" i (5)2 J—l(_nj[ii) ((2 :ijj))

oy «u
|

* Interpolating function at node “i “takes value equal to 1 and 0 at other nodes.

* Natural coordinates are local coordinates in a dimensionless form. “xc” represents
the central element coordinate.

e Limits of integration from “-1” to “+1”.

M, =) My (2]
geometria real
1 1
F @ :
= i 9 X
[£]]
! o = E: iI!'(—Juzt:

I.||z|



LAGRANGE INTERPOLATING FUNCTIONS 1D

e In natural coordinates:
— Interpolating functions for two nodes element.

1 '__1
I

Sy

—~—

Sy
|

[—Y

—

c
—~
LAY
N—"
Il
S
=
=
prd
N
prd
w
~—
~
c c
w N
N
- "'III.
j:
{ "
o] ]
| I
[l I G
Iy =
gt
N
_|_ ——
—
rn =
|
.

)

N, ==
— Interpolating funtions for four node element. ~ 16 16
(U, | 9 2. 9,
! N:=16 " 16° 16° 16§
u 9 27
u(@)=(N, N, N, N,)} “} N3=——§——52 el
@ (5) < . 2 3 4> u, 116 16
iPb u,. N e e




ISOPARAMETRIC INTERPOLATION 1D

e For the case one dimensional finite element (bar)

— Interpolating shape functions (geometry), are the same used for interpolating
unknown function (displacement, temperature, etc.)

e Assume displacement field “u” as unknown:

U(SE): Nl(f)ul + Nz(‘f) U,

e Strain displacement should be calculated with:

du _dN,(¢) . dN,(¢)

u, +
dx dx dx

&= u,

 The space derivative of each interpolating function should be calculated
according:

dN, (&) _dN,(¢)d¢s _-1d¢

dx dé dx 2 dx

&> IN(E) _dN,(£)de _ +1de

lpb dx dé dx 2 dx




ISOPARAMETRIC INTERPOLATION 1D

To complete formulation:

— Geometry should be approximated by the same funtions (isoparametric concept).

X(f): Nl(ég) X+ Nz(f) X2

— Differentiate between natural and global coordinates to obtain the Jacobian*
determinant:

dx(g):le(g)X+dL®x _ le(cf) dNZ(Cf) X, | o
e dg tode 7 de dé /1% Na =3 (1+¢)

Recall interpolating function derivatives and assuming Jacobian as a real number:

dN; (&) _dN(§)dg _dNy(¢) 1 1 dN(¢) _ 1dN(¢)

Ny=5(1-¢)

| =D =

dx dé dx de dx  dx de I dé
Strain approaches: d¢ dé

du _dN,(&) dx  dN,(§) dx 1 <dN1(§) dN2(§)>{u1}
E = — u1-|- u2:
dx  dx dé dx dé dx \ d¢ dé /l|u,

Super-parametric interpolation: dé

— degree for shape functions is higher than degree of unknown function.
@ub-parametric interpolation:

ipb — degree for shape functions is smaller than degree of unknown function.



INTERPOLATING FUNCTIONS 2D

Element with 1 DOF oer node

T x, v local coordinate system

{ X, Y global coordinate system
T
A
T;
I‘Nf

[M veni]

L

LZL

base

=X

Consider a linear approximation over the rectangular finite element

=b, +b,x + b,y +b,xy = (P){b; }

(P)={ x y xy)

Substitute the nodal parameters in to the assumed 1st order displacement field.

The interpolation functions (Ni, Nj) will appear (in global coordinates).

fT.\

TJ
Tm
T

H{2) b2

N, = [Nn]zi(l_zj

W |



INTERPOLATING FUNCTIONS 2D

v

Linear Element with 2 DOF per node (Lagrange Family): 4 n

) Uy (x=0,y=w) (x=Cy=w)

(E=-1,n=1) E=1Ln=1)
N b’m.t' n m

|

w > &
(0,0) 5

Tn'
Ui, ! ! > X

" J (E=-l.n=-1) (&=1.n=-1)
(x=0,y=0) (x=0y=0)

—

- ( L.
F

Consider a linear approximation for x and y displacement (u,v) over the
rectangular finite element.

u =@ & 7 &n)b, b, by by) =(P){}
Substitute the nodal parameters in to the assumed 1st order displacement
field. The interpolation functions (Ni, Nj) will appear (in local coordinates).

v -Laohon) N -




INTERPOLATING FUNCTIONS 2D

e (Quadratic element with 2 DOF per node (Lagrange Family):

X2=X1+X3
2 ®
7
7 6 3
4 8
8 9 14
1 2 3 ‘
U3 1 2 3
Ul U2 ® ® ®
Ul U2 U3
- X

e Consider a quadratic approximation for x and y dlsplacement (u,v) over the
rectangular finite element. |
w=(1 & g & & n® &y &t )b b, . b)) =(P)b}
e Substitute the nodal parameters in to the assumed 2" order dlsplacement _ﬁ:‘*’f;‘»
field. The interpolation functions (Ni, Nj) will appear (in local coordinates).

ue:<N|>{U|} ue:<Ni>{Vi} %’é‘%’é‘?
- al-Ni-n)  N=—nl-2h —-enlesl-n)  No= el i)
Q S () N MRS B (R N, =—=&n(l-&Ni+n) — = f1-&)-n?)




FINITE PLANE ELEMENT

(11)
« Assume displacement field {u}ziu}
v

Perform strain calculation in plane:

o
OX
0

0

oy

0

9
oy
o
OX

(x=L0,y=w)
E=1.n=1)

(0,0)

(E=-l.n=-1)

(x=0,

y=0)

(E=Ln=-1)
(x=0y=0)

e Determine important matrices for stiffness matrice [K]: B=LN

|| o

|

N,
0

0
N,

N,
0

0
N,

N,
0

0
N,

N

n

0

N,

oN,

an,

oN

0 0 0 © 0
OX OX OX OX
0 ON, 0 oN, 0 ON, 0 ON,,
oy oy oy
ON, ON, ON, ON, oON; ON, ON, ON,
oy ox oy ox oy ox oy OX




FINITE PLANE ELEMENT

 Stiffness matrice in natural coordinates: | J—

+1+1

= [[8] [][8] a2 [ [[&] [][B]pjazdn = 3 >"[B [D] (8] [ Wi, +

Q 14 p=1 g=1 4 4(-1.1) 3(1.1)
* Load vector in natural coordinates: | -
+1+1 ,iﬂ 1(-1.-1) | L21-p

= jNdeQ [ [INTb3jdédn = ZZ([NTb\J\)pqvvw L

-1-1 p=1g=1 - X
e Due to variables substitution, do not forget to use Jacobian x oy
& A
Jen=1% 5|
dQ:‘J‘ngdn oy
an  Jn

e Special attention is due to numerical integration over reference element
(natural coordinates).
— “Reduced” versus “Full” integration.

— Full integration: Quadrature scheme sufficient to provide exact integrals of all terms
of the stiffness matrix if the element is geometrically undistorted.

— Reduced integration: An integration scheme of lower order than required by “full”

@ integration.

=

Po



INTERPOLATING FUNCTIONS 3D

Linear Element with 8 nodes, hexahedron (Lagrange Family):

S — 8 3 8
| - ——

4

1 & — — — 4 — 4.

Consider a linear approximation for each degree of freedom:

(PY=(1L & n ¢ én né & éEnd)

Interpolating functions:

Nﬁ%(l—f)(l—n)(l—{) N2=%(1+§)(1—77)(1—5) N3=%(1+§)(1+77)(1—5) N4=%(1—§)(1+77)(1—é”)

Ny =Z(@-OE-MA+e)  Ne=S@rOE-ma+e) N, =Z@+HE+mEse) Ny =2 A-Oa+mA+o)

£

—

Po



INTERPOLATING FUNCTIONS 3D

Quadratic element, incomplete, with 20 nodes, hexahedron (Lagrange family):

-. x . . ! ° ‘
Consider a quaarauc, incomplete approximation for each degree of freedom:

(PY=(UEn& & énn® ng &P &G E nén’ 0 ¢ nd? &7 & ¢ ént & né én® & énd?)

Interpolating functions:

Far vortevy nndoc:
1 Vi Vol LN TTVUUGL D,

* Node numbers: 1,3,5,7,13,15,17,19
Every mid side node parallel to first natural coordinate: (&)= _(1 ENL+ )L+ &.8)
* Node numbers: 2,6,14,18
Every mid side node parallel to second natural coordinate:y (&, 5):_(1 1YL+ )L+ EE)
* Node numbers: 4,8,16,20

Every node parallel to third natural coordinate:
e Node numbers: 9,10,11,12

Ni(f,n,é“)=%(1+ffi)(1+nﬂi)(1+§§i)(§§i 4G —2)

N (67,¢) = U=+ 68)
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FINITE SOLID ELEMENT

e Numerical integration

{)

Y £, n(y). &(z) l
+1+1+1
|=[[[f(n¢)dédnds =
1-141 Ic (111
_ZZZWWjka(é:i’njlgk) : * <
i=1 j=1 k=1 Z/ i > Y
111 n n n
f}=[[NTbdo=[[[INTbpjdadnds =D > > (NTba]), . WwWW,
Q -1-11 p=1 g=1 r=1
111
- [T o)le] o~ [ [leT(olle Jjosaac =333 [eT olfel o, wowaw
Q -1-1-1 =lg=lr
. A"
0,57735 g e }/‘:' "'3
3 |#
A 0,57733 1:1- 057735




FINITE ELEMENT CONTINUITY

Continuity is important from the physical point of view (prevent gaps in
displacement, for example) and important from the mathematical point of

view.
The finite element solution will converge to the exact solution as the number
of elements increases, provided that two conditions are satisfied:

— Compatibility: Cn-1, Continuity exists at the element interface;

— Completeness: Cn continuity of the field variable within element.
* “n”is the highest order derivative that appears in the element interpolating functions.



FINITE ELEMENT CONTINUITY 1D

* For one dimension finite elements:

Element Degree of Continuity Number of DOF
polynomial nodes
Lagrange 1 Co 2 2
Lagrange 2 G 3 3
Lagrange 3 Co 4 4
Lagrange n-1 Co n n
Hermite 3 C, 2 4
Hermite 5 C, 2 6
Lagrange - Hermiite 4 C, 3 5

u=Field variable

Field variable:
Continuity in element and

YV x

in boundary.

du/dx

Field variable Derivative:
Continuity in element but

v

not in boundary.




FINITE ELEMENT CONTINUITY 2D

e For two dimensions finite elements:

Element Degree of Continuity Number of
quadrilateral polynomial nodes
Lagrange 1 Co 4 4
Lagrange 2 Co 9 9
Lagrange 3 Co 16 16
Lagrange 2 Co 8 8
incomplete
Lagrange 3 C, 12 12
incomplete
Hermite 3 Semi C, 4 12
Hermiite 3 G 4 16
(quadrilateral)




FINITE ELEMENT CONTINUITY 2D

e For three dimensions finite elements:

Element Degree of Continuity Number of

tetraedrum polynomial nodes
Lagrange 1 Co 4 4
Lagrange 2 Co 10 10
Lagrange 3 G 20 20
Element Degree of Number of

hexaedrum polynomial nodes
Lagrange 1 Co 8 8
Lagrange 2 Co 27 27

Hermiite 3 Semi C, 8 32




FINITE ELEMENT GENERAL FLOWCHART

e Sample flowchart

Read input file / manu;knput / graphical input

¥

Integration point definition

Interpolation functions (N) and derivatives (dN/dk, ...)
calculation at integration points

| For each Integration point :

B matrix calculation

For each element :
Jacobian, inverse, inverse transpose matrices and
Jacobian‘iilculation

Element matri>$nd Load vector

@“ Assembling Element;atrix and load vector

Solution




FINITE ELEMENT (FORTRAN)

DAaA~A i nnll 'Fln /M—\nll l nnnl Inv-—\v'\ ﬁ Al nnll'l' (llea +lha FiinArianalitv AF rll'r\_
N\NTau IP i< 7 triatiudail I|J L/ s |J I al IIP L{uUoC LT | ICLIV ICIIILy Ul SJUNV
routine). Use free or fixed format.
— Read node coordinates, connectivity matrix
— Input:
e NDIM: problem dimension (ex:1,2,3)
e NNEL: Number of nodes for each element
* NR: logical unit for reading data
* NP: Logical unit for printing
— Output:
* NNT: total number of nodes
e NELT: Total number of elements SUBROUTINE GRID(NDIM,NNEL,NR,MP,NNT,MELT,VCORG,KCONEC)
_ IMPLICITE REAL*8(A-H,0-2)
* VCORG: nodal coordinates DIMENSION VCORG(NDIM, 1), KCONEC(NNEL, 1)
« KCONEC: connectivity table oLl L NED
WRITE(MP,*) NNT,NELT
— Program Sample: DO 10 IN=1,NNT

READ (MR, *) (VCORG(l,IN), 1=1,NDIM)
10 WRITE (MP,*) IN,(VCORG(I,IN), I=1,NDIM)

DO 20 IE=1,NELT
READ (MR, *) (KCONEC(I,IE), 1=1,NNEL)
20 WRITE (MP,*) IE,(KCONE(L,IE), 1=1,NNEL)
RETURN
END




FINITE ELEMENT (FORTRAN)

Automatic calculation of interpolating
functions and derivatives (Use free or fixed
format).
— Example for quadrilateral 2D, 4 node finite
element.
— Input:
e VKPG: Coordinates of each integration
point
e |PG: Number of integration points
— Output:
* VNI: funtions N, dN/dksi and dN/deta
— Program Sample:

SUBROUTINE NIQ(VKPG,IPG,VNI)
IMPLICITE REAL*8(A-H,0-2)
DIMENSION VKPG(1), VNI(1)

«CYCLE FOR GAUSS POINTS:

oll=0

e1J=0

*DO 10 IG=1,IPG
XG=VKPG(lI+1)
*YC=VKPG(1J+2)

o* INTERPOLATIONG FUNCTIONS
*VNI(11+1)=0.25*(1-XG)*(1-YG)
VNI(11+2)=0.25*(1+XG)*(1-YG)
VNI(114+3)=0.25*(1+XG)*(1+YG)
VNI(11+4)=0.25*(1-XG)*(1+YG)

o* INTERPOLATIONG FUNCTION DERIVATIVES TO KSI:
*VNI(I1+5)=-0.25*(1-YG)
*VNI(11+6)=0.25*(1-YG)
*VNI(11+7)=0.25*(1+YG)
*VNI(11+8)=-0.25*(1+YG)

o* INTERPOLATIONG FUNCTION DERIVATIVES TO ETA:
*VNI(11+9)=-0.25*(1-XG)
*VNI(11+10)=-0.25*(1+YG)
VNI(11+11)=0.25*(1+XG)
VNI(11+12)=-0.25*(1-XG)

oll=I1+12

ol)=1)+2

+10 CONTINUE

RETURN

END




2D - ELASTIC PLANE STRESS ANALYSIS - CASE 5

Consider a beam subjected to shear load, defined by its medium plane.

Consider material with elastic modulus E=200 [GPa ] and Poisson coefficient 0.3.
Consider defined geometry.
e [=1.0 [m], b=0.025 [m], d=0.1 [m].
Consider boundary conditions:
e Left: fixed in x and y directions.
e Right: Vertical load at point B, 1000 [N].
Test both finite triangular and quadrangular elements for:
e Vertical displacement at point B;
e Shear stress at mid span, cross section path;
* Longitudinal stress at top fibre, line DC.

D C




2D - ELASTIC PLANE STRESS ANALYSIS - CASE 5

e Theoretical results: E

W‘bending (X - L) - BE

— Vertical displacement due to bending:
* Prepresents load and | represents 2nd order moment of area.

— Vertical displacement due to shear:
* For slender beams this contribution may be disregarded.

PL
e For stocky beams this contribution is important: Wlshear = FE
— G represents the elastic shear modulus;
— Fis the shear section factor, in this case equals 1,2.
— Bending stress:
+ My

— Shear Stress:

* Qrepresents the 15t order moment of area, regarding sub-section level where stress is
calculated. PQ

7=
Ib

|Pb F=6/5 F=> F=10/9 F=12/5
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SIMPLE FINITE ELEMENT ANALYSIS

Linear and Static Analysis

— the most common and the most simplified analysis of structures is based on
assumptions:

Static:
— Loading is so slow that dynamic effects can be neglected

Linear :
— Material obeys Hooke’s law.
— External forces are conservative.
— Supports remain unchanged during loading
— Deformations are so small that change of the structure configuration is negligible.

Consequences:

— displacements and stresses are proportional to loads, principle of superposition
holds.

— A set of linear algebraic equations for computation of displacements is used.



ADVANCED FINITE ELEMENT ANALYSIS

Sources of structural nonlinearities can be classified as:

Material: material behaves nonlinearly and linear Hooke’s law cannot be used.
More sophisticated material models should be then used instead .

* Nonlinear elastic (Mooney-Rivlin’s model for materials like rubber)

e elastoplastic (Huber-von Mises for metals, Drucker-Prager model to simulate the
behaviour of granular soil materials such as sand and gravel).

e FEtc.

Geometry: changes of the structure shape (or configuration changes) cannot be
neglected and its deformed configuration should be considered.

Boundary nonlinearities - displacement dependent boundary conditions.
* The most frequent boundary nonlinearities are encountered in contact problems.

Consequences:

Instead of set of linear algebraic equations, a set of nonlinear algebraic equations

are achieved. [R]{d } _ {F }

The principle of superposition cannot be applied.

The results of several load cases cannot be combined. Only one load case can be
handled at a time.

Results of the nonlinear analysis cannot be scaled.



ADVANCED FINITE ELEMENT ANALYSIS

 Consequences (continued):

— The loading history may be important, especially, plastic deformations depend on a

manner of loading. This is a reason for dividing loads into small increments in
nonlinear FE analysis

— The structural behaviour can be markedly non-proportional to the applied load. The

initial state of stress (residual stresses from heat treatment or manufacturing
welding etc.) may be important.




ADVANCED FINITE ELEMENT ANALYSIS

To reflect loading history :
— Loads are associated with “pseudo time curves”.

— the “time” variable represents a “pseudo time”, which denotes the intensity of the
applied loads at certain step.

For nonlinear dynamic analysis and nonlinear static analysis with time-
dependent material properties:

— the “time” represents the real time associated with the loads’ application.

load




ADVANCED FINITE ELEMENT ANALY?IS {L EXAMPLE

e Geometrically nonlinear finite element analysis: N | .
— Example : linearly elastic truss subjected to vertical load p‘ﬁ ;;iin'!.%.-:;
« Undeformed configuration: g_,,,,;m H
— vertical position of right extremity = h LO A
* Deformed configuration: )

— vertical position of right extremity = h+u

— Static equilibrium:

e (1) Nodal ilibrium i tical direction: — I _P =
(1) Nodal equilibrium in vertical direction ZFi,y -0 o Nsiha-P=0
_ . . . h+u
e (2) Equilibrium at deformed configuration: Sing =——
h+u
— From (1) and (2) N——-—-P=0
L

— N should be considered as axial effort; N=EA ¢

— Being the cross section of truss defined by: Ao

— Strain (1%t order approximation), engineering strain) may de determined:

g:(L_LO)/LO

lpb — Initial and current length of the truss are: L, = /a2 + h? L :\/a2+(h+u)2

7
0

\
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ADVANCED FINITE ELEMENT ANALYSIS - EXAMPLE

New measure of strain (Green strain tensor):
— itis convenient to introduce this definition (2" order approximation).

L° - L ; a?+(h?+2hu+u?)-(a>+h?) h u .\
g = —_— — =
° 212 © 212 L, L,
The 15t order may be related with 2"9 order of approximation:
1
Eg = 5+§gz

The stress-strain relation may be written if the following format:
£ & E

=E—e¢. =E En =
o G 1 ) G 1

¢ E+—¢& 1+—¢
2 2

Where E* is the new modulus of elasticity:

& =E &5

— not constant and depends on strain.

E*:L

1+1g

2

_(_

L,

jz



ADVANCED FINITE ELEMENT ANALYSIS - EXAMPLE

e The new modulus of elasticity E*:

— If strain is small (e.g. less than 2%) differences are negligible, see table.

ALTL, £ &g E(MPa) | Ef(MPa) | Ee(MPa) E*e(MPa)
0,0000 0,0000 0,000000 21 000 21 000 0 0
0,0050 0,0050 0,005013 21 000 20 948 1050 1050
0,0100 0,0100 0,010050 21 000 20 896 210 210
0,0150 0,0150 0,015113 21 000 20 844 315 315
0,0200 0,0200 0,020200 21 000 20 792 420 420

e Assuming that strain is small, AXIAL effort equals to:

N=EA ¢=E A ¢, ~E Ag,

e After substituting into previous equation, the condition of equilibrium appears
to demonstrate a non linear relation between load P and displacement u .

g
g NM—P:O = EAO[u3+3hu2+2h2u]:P

ipb L 213




ADVANCED FINITE ELEMENT ANALYSIS

e Generally, using FEM a set of nonlinear algebraic equations for unknown nodal
displacements may be determined.

[RId}=1F}

e Assuming infinitesimal increments for internal and external forces:
— Incremental displacement dd.
— Incremental force dF.

[R[{d +dd}={F +dF}

e Assuming the first order approximation for the internal energy.
— The concept of tangent stiffness matrix become important.
11 O[R]
[Rl{d +dd}=[R {d}+L dd
T od
=[R}{d}+[K; ]dd

@ A new relation between incremental displacement and incremental force:
=

ob K, Jdd ) oF )




ADVANCED FINITE ELEMENT ANALYSIS

Incremental method

The load is divided into a set of small increments AF; .
Increments of displacements are calculated from the set of linear simultaneous

equations : [KT ]i_l{Ad }i _ {AF }i

where K71y is the tangent stiffness matrix computed form displacements dj; ,,
obtained in previous incremental step.

Nodal displacements after incremental load of AF; may be computed from:

{d }i = {Ad }i -1 {Ad }i

approximative i ﬂ exact solution
TN solution s
=

£ .y |
77 displacement |
I !

error
L

|
|
F, / =
!
|
|
|
|
|
|
|
|
|

~ /
L /

/
A
/

d1-F

'—ldll Ad,
d, |
d,

AF,

-_ldg

|
|
|
|
:
L
+
|

d3




ADVANCED FINITE ELEMENT ANALYSIS

Iterative method (Newton-Raphson)

Consider that d, is an estimation of nodal displacement. As it is only an estimation,
the condition of equilibrium would not be satisfied:

Rl = {F

This means that condition of equilibrium of internal and external nodal forces are
not satisfied and there are unbalanced forces at nodes (residuals).

{r}i = [R]{d }i - {F}

Correction of nodal displacements can be then obtained from the set of linear

A

algebraic equations: F —

[K, J{ad} = {r} ¥ 2

and new, corrected estimation of nodal displacements is:

v

ia) = {a) fad ) s

e The iterative procedure (n) is repeated until accurate solution is obtained.

R

|
|
|
|
|
|
|
|
|
|
|
|
|
|

* The first estimation is obtained from linear analysis.



ADVANCED FINITE ELEMENT ANALYSIS

e [terative method (Modified Newton-Raphson)

A

A | ___7_
P

-

d, Ad,_|Ad,|Ad,
d.
d.

d

e Combination of Newton-Raphson and incremental methods

AF
w - |
- |
|
u-N | |
=] | |
Lol | |
@ B | |
e | | |
2 < | | |
d
, | | | g
\ Ady | ad, | d, |




ADVANCED FINITE ELEMENT ANALYSIS

e Material nonlinearities: Nonlinear elasticity models

— For any nonlinear elastic material model, it is possible to define relation between
stress and strain increments as :

o) =[D; iae]

— Matrix Dy is function of strain field & Consequently, a set of equilibrium equations
we receive in FEM is nonlinear and must be solved by use of any method described
previously.

e Material nonlinearities: Elastoplastic material models

— The total strains are decomposed into elastic and plastic parts

— The yield criterion defines whether plastic deformation will occur.

— The plastic behaviour of a material after achieving plastic deformations is defined
by so-called flow rule in which, the rate and the direction of plastic strains is related
to the stress state and the stress rate. This relation can be expressed as:

& de?) =2 2



ADVANCED FINITE ELEMENT ANALYSIS

Material nonlinearities: Elastoplastic material models

Constitutive equation can be formulated as:

iAoy =[D; fig o |
The tangential material matrix Dy is used to form a tangential stiffness matrix K.

When the tangential stiffness matrix is defined, the displacement increment is
obtained for a known load increment

[KT ]i—l {Ad }i = {AF }i
As load and displacement increments are final, not infinitesimal, displacements
obtained by solution of this set of linear algebraic equation will be an approximate
solution. That means, conditions of equilibrium of internal and external nodal
forces will not be satisfied and iterative process is necessary.

The solution problem - not only equilibrium equations but also constitutive
equations of material must be satisfied. This means that within the each
equilibrium iteration step check of stress state and iterations to find elastic and
plastic part of strains at every integration point must be included.

The iteration process continues until both, equilibrium conditions and constitutive
equations are satisfied simultaneously.

The converged solution at the end of load increment is then used at the start of
new load increment.



ADVANCED FINITE ELEMENT ANALYSIS (BUCKLING)

Buckling loads represent critical loads where certain types of structures
become unstable. Each load has an associated buckled mode shape; this is the
shape that the structure assumes in a buckled condition. There are two
primary means to perform a buckling analysis:

— Eigen-value:

P -
!

Eigen-value buckling analysis predicts the theoretical buckling strength of an ideal elastic
structure.

It computes the structural eigen-values for the given system loading and constraints.
This is known as classical Euler buckling analysis.

However, in real-life, structural imperfections and nonlinearities prevent most real-world
structures from reaching their eigen-value predicted buckling strength; ie. it over-predicts
the expected buckling loads.

This method is not recommended for accurate, real-world buckling prediction analysis.

— Nonlinear:

Nonlinear buckling analysis is more accurate than eigen-value analysis because it employs
non-linear, large-deflection, static analysis to predict buckling loads.

Mode of calculation: gradually increases the applied load until a load level is found
whereby the structure becomes unstable. Suddenly a very small increase in the load will
cause very large deflections).

The real non-linear nature of this analysis involves the modeling of geometric
imperfections or load perturbations and material nonlinearities.



2D — BUCKLING ANALYSIS - CASE 6

e Member Design — Columns (Eurocode):

— Design concerned with compression members (eg pin-ended struts) subject to :

e axial compression only ;

no bending.

— In practice real columns are subject to:

eccentricities of axial loads;
transverse forces.

— stocky columns:

Q — slender columns:

b

very low slenderness are unaffected by overall buckling.

The compressive strength of stocky columns is dictated by the cross-section, being a
function of the section classification.

1s are unaffected y loca
e

Nace 1 D Q. mrmce camti~ | PR 4 H ng:
Ci1dass 1,Z4,5: Cross-sectio DUCKIIN 8-

— design compression resistance Nc.Rd equals th
— Ncrd =Afy Mmo

Class 4: local buckling prevents the attainment of the squash load.
— design compression resistance limited to local buckling resistance,
- Nc.Rd = No.Rd:Aefffy /'YMI
— A Is the area of the effective cross-section

plastic resistance Npl.Rd

Presents a quasi elastic buckling behaviour.



2D — BUCKLING ANALYSIS - CASE 6

Member Design — Columns (Eurocode):

— A compression member should be verified against buckling as follows:

N Ed
N b.Rd

NEd is the design value of the compression force;

<1.0

Nb,Rd is the design buckling resistance of the compression member.

— Design buckling resistance of the compression member (Nb,Rd )

Class 1,2,3 cross sections:

- - 0,5 —
L AT, — | Af 1
N = 1= y
b.Rd VM] N Z = 5 S 1
2 0,5
e g+ -7 ]
Class 4 cross section: — )
) - 0,5 _ Pl P
N . S l — y
b.Rd . =
/vt N
_ _ — Table 6.1: Imperfection factors for buckling curves
Dimensional slenderness: 4 ‘ .
Buckling curve i a b c d
|mperfection factor: o Imperfection factor o 0.13 0.21 0.34 0.49 0.76

Ncr: is the elastic critical force for the relevant buckling mode.




2D — BUCKLING ANALYSIS - CASE 6

Member Design — Columns (elastic theory):

— Euler critical load

Equilibrium equation:

A
d® c
E15Y _m(x) P
dx
Bending moment: f, \
M (x)=—P.y(x) E Euler

Substitute into the ODE: :

P/EI =k’ |
Get the new homogeneous ODE: '

d? I ?
z/ +k’y=0 —
dx P M A

Assume the following solution:

y(x)=C, sin(kx)+C, cos(kx)
Get the critical load and critical stress:

— Arepresents column slenderness,

— Lrepresents the length and r the radius of gyration.

2 2
— N=1 represents the first mode. 5 n? 72 El P, #n°E 7#°E
T (0
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2D — BUCKLING ANALYSIS - CASE 6

Non-dimensional buckling curve:

—inelastic buckling occurs before the Euler
buckling load due to imperfections (initial
out-of-straightness, residual stresses,
eccentricity of axial applied loads, strain-
hardening).

—lower bound curve were obtained from a
statistical analysis of test results.

—Test results: More than 1000 for different
sections (I,H,T,C,O,etc.). Range of
slenderness ratios between 55 and 160.

Table 6.2: Selection of buckling curve for a cross-section

—Supported by analysis.

1.0

s :{:““_-H: dy
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2D — BUCKLING ANALYSIS - CASE 6 2 | 23066 | ma

A 1.53E-3 m2
Eigen-value ANSYS analysis to determine Elastic curve. SR s
— Open preprocessor menu /PREP7 Wpl 5.49E-5 m3

Define Keypoints Preprocessor > Modeling > Create > Keypoints > In Active CS ...
Create Lines Preprocessor > Modeling > Create > Lines > Lines > In Active Coord
Element Type > Add/Edit/Delete (For this problem we will use the BEAM3).

Real Constants... > Add... In the 'Real Constants for BEAM3' window, enter the
information for squared hollow section profile 100x100x4, using the following
geometric properties:

e Cross-sectional area AREA, moment of inertia 1ZZ, Beam Height HEIGHT:

Material Models > Structural > Linear > Elastic > Isotropic In the window that

appears, enter the following geometric properties for steel: - 1000
e Vniinag'e mnditliic EY: 2 1211 INN/m?1 DaAiccan'c Ratin DRYV- N 2 . L o20
UIIB S I1ITUUUIULO LL/\. &.1LC 1.1 LI\I/IIILJ, I ViooJVil o INAQlLIV T I\AN\1l. V.J
Meshing > Size Cntrls > ManualSize > Lines > All Lines... - I |
Yy y
Meshing > Mesh > Lines > click 'Pick All e
Solution Phase: Assigning Loads and Solving > 2

Define Analysis Type Solution > Analysis Type > New Analysis > Static
ANTYPE,O

* To perform an eigenvalue buckling analysis, prestress effects must be activated.

Apply Constraints Solution > Define Loads > Apply > Structural > Displacement.



2D — BUCKLING ANALYSIS - CASE 6

Eigen-value ANSYS analysis to determine Elastic curve (cont.)

Define Loads > Apply > Structural > Force/Moment > On Keypoints
* The eignen-value solver uses a unit force to determine the necessary buckling load.
e Apply a vertical (FY) point load of -1 N to the top of the beam.

Solve > Current LS
Exit the Solution processor .

* Normally at this point you enter the post-processing phase. However, with a buckling
analysis you must re-enter the solution phase and specify the buckling analysis. Be sure
to close the solution menu and re-enter it or the buckling analysis may not function
properly.

Solution > Analysis Type > New Analysis > Eigen Buckling
ANTYPE,1

Solution > Analysis Type > Analysis Options

— Complete the window which appears, as shown below. Select 'Block Lanczos' as an extraction
method and extract 1 mode.

— The 'Block Lanczos' method is used for large symmetric eigen-value problems and uses the
sparse matrix solver.

— The 'Subspace' method could also be used, however it tends to converge slower as it is a more
robust solver.

— In more complex analyses the Block Lanczos method may not be adequate and the Subspace
method would have to be used.
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2D — BUCKLING ANALYSIS - CASE 6

Results for elastic and non-linear plastic analysis for SHS100x100x4

Nb/Nc,RD

1,20

1,00

0,80

0,60

0,40

0,20

0,00

==Ncr/Nc,Rd

@ Ncr(Ansys)/Nc,Rd

@® Nb,Rd(Ansys)/Nc,Rd =O=EC3, parte 1.1

0,0

0,2 0,4

0,6

0,8 1,0 1,2
non dimensional slenderness

1,4

1,6

1,8

2,0



FIRE ANALYSIS

* Fire analysis is an uncouplie thermal and mechanical analysis based on:

STRUCTURAL DESIGN PROCEDURE

PRESCRIPTIVE
BASED RULES

PERFORMANCE
BASED RULES

Member Calculation of
mechanical
actions and

Part of structure boundaries

Selection of

Entire structure mechanical
actions

Member

Calculation of
mechanical
actions and

Part of structure boundaries

Selection of

Entire structure mechanical
actions

=

TABULATED DATA

(LEVEL 1)

SIMPLE
CALCULATION
MODEL
(LEVEL 2)

ADVANCE
CALCULATION
MODEL
(LEVEL 3)




FIRE DESIGN PROCEDURES

e Alternative limit states:

EEdei

Fafhdi

thd
fi,requ
cr,d

=

Time domaln, tfi,d thi,requ
FQde,t 2 EEﬁ,dJ

Temperature domain. 6,<6,,

Strength domain;

- The design effect of actions for the fire situation,
determined in accordance with ENV 1991-2-2,
including the effects of thermal expansions and
deformations;

- The corresponding design resistance in the fire
situation.

- Time design value for the limited design state.

- Required regulation time at fire conditions.

- Critical temperature design value.

-Design steel temperature.

R,E |

Efi,d

01

tfig

04

—

) crd

Y



VERIFICATION METHODS FOR FIRE ANALYSIS

° Strenafh donmain:
5‘-" AVVITIUlLL .

Design actions E fi < Rf_ dt Design resistance
|1 _ I’ )

(including the effects of thermal
expansions & deformations )

Member
: Vv
analysis _
: —either
either
| Part of the |
l l Structure ’
Nominal fire Other model for fire Global_ <« Fire tests
exposure exposure analysis
’@ The rules given in the Code are valid only for the standard fire

exposure.




FIRE RESISTANCE RATING

e Structural and separating elements may require:

— R criteria: Load bearing function is maintained during the required time of fire
exposure (mechanical resistance). With the hydrocarbon fire exposure curve the
same criteria should apply, however the reference to this specific curve should be
identified by the letters "HC";

— E criteria: integrity is the ability of a separating element of building construction,

when exposed to fire on one side, to prevent the passage through it of flames and
hot gases and to prevent the occurrence of flames on the unexposed sides;

— | criteria: insulation is the ability of a separating element of building construction
when exposed to fire on one side, to restrict the temperature rise of the unexposed

face below specified levels.

Load Load Load

R RE REI



MATERIAL BEHAVIOUR AT ELEVATED TEMPERATURE

e Steel:

— Thermal properties:
» Evidence of crystal modification (allotropic transformation, phase y (austenitic);
* The thermal expansion coefficient may de determined by Thermal deformation derivative.

Thermal conductivity SteelEC3 Specific Heat —Steel EC3 Thermal deformation —Steel EC3
—>teel

[W/mK] [)/keK] [m/m]
60,0 5000 0,020
50,0
4000 0,016 1
40,0 A
3000 A 0,012 4
30,0 4
2000 0,008 -
20,0 4
10,0 1 1000 4 0,004 -
0,0 : : : : : 0 : : : : . 0,000
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Temperature [°C] Temperature [°C] Temperature [°C]

— Mechanical properties:
e Elastic modulus reduces after 100 [2C];

e Yield strength reduces after 400 [2C].
Elastic Modulus Yield Stress

IN/m?] [N/m?]
2,5E+11 3,0E+08
2,5E+08 |
2,0E+11
2,0E+08 -|
1,56+11
1,5E+08
1,0E+11 A
@ 1,0E+08 -
W __:.? 5,0E+10 - 5,0E+07 -

0,0E+00 T T T T T 0,0E+00 T T T T T
. - 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200

Temperature [°C] Temperature [°C]



THERMAL LOADING I1SO834

e Notes about ISO fire curve

— Has to be considered in the WHOLE compartment, even if the compartment is
huge.

— Does not consider the PRE-FLASHOVER PHASE.
— Does not depend on FIRE LOAD and VENTILATION CONDITIONS.
— Never goes down.

e Heat flux: I:]net - 7/n,rhnet,r + 7n,chnet,c M /mz]

net,c :ac(eg _em) M/mz]

s = dn.y x5,67x10°(0, +273) - (0, +273)'] W /m?]

— Convection; h
— Radiation.

Temperature [2C]

A — 1- Natural fire curve
CONTROL BY ACTIVE STRUCTURAL
MEASURES: PROTECTION BY f 2- Standard fire curve for fire resistance tests
oFire detection ACTIVE 1ISO834 0
eFire extinction MEASUR 6 - 20 + 345 X IOglO (8t + 1) [ C]

. . /

e\/entilation
eSprinkler

“FLASHOVER” )

TIME [min]




THERMAL LOADING I1SO834

View factor /Shape factor:
— For convex element surface, each element point if exclusively influenced by the

enclosure temperature.

— The view factor should be considered equal to 1.

Radiative
Surface

Element

— For concave element surface, each element point may be protected from enclosure
temperature and may be dependent on its own temperature.

— The view factor may be computed for each element surface.

’7 adiative
FH( RSLj:Irfatce

Element ﬂ




THERMAL LOADING ALTERNATIVES

Nominal curves:

— conventional curves, adopted for classification or verification of fire resistance, e.g.
the standard temperature-time curve, external fire curve, hydrocarbon fire curve.

Time equivalent:
— Depends on the design fire load density and other factors.
Parametric fires:

— determined on the basis of fire models a
defining the conditions in the fire compartmen

thegspecific physical param

e 1zone model
— Assumes uniform, time dependent temperature distribution in the compartment
e 2zone model

— Assumes an upper layer with time dependent thickness and with time dependent
uniform temperature, as well as a lower layer with a time dependent unlform and
lower temperature.

e Computational Fluid Dynamics
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Ansys software to analyse t
Preferences, Thermal Analysis.

Element Type: Shell 131, Options see figure.

» Keyoption (3)=1, first to allow introducing thickness;

e Keyoption (4)=1, defines the number of layers.

| Cancel ‘

Options for SHELL131, Element Type Ref. No. 1

b U S perature
Evaluate film coefficient at
Temp variation through layer i O variatio ‘

Number of layers T

Application Thermal Shell <
* Keyoption(3)= 2, to define “no temperature” variation across thigkness,

No real constants are defined. Instead sections are define.

Material Properties: T —
* Non linear behaviour (temperature dependent). ”9 b 5de z
Modelling: # memitrac s :
e Create initial section at X=0, by definition of 7 Key points. © s Catarts
e Create line for extrusion modelling. Define KP 8. = i | {1 =i
* Create 5 lines at the initial section. 5 55
 Create areas by extrusion of lines: 275
— MODELING+OPERATE+EXTRUDE+LINES+ALONG LINES A 7 “ o 6
* Delete extra lines, using: \ 2 0 0 |o00a715
— NUMBERING CONTROLS+MERGE ITENS+NODES j 2 ;’;’2277; ZZZE
* Meshing areas, using: 94.3 100 = = faes men
— MESHING+MESH ATTRIBUTES+PICKED AREAS 6 0 | -00275-0.04715
— MESHING+SIZE CONTROL+MANUAL SIZE+LINES | V e R B S

— MESHING+MESH+AREAS+MAPPED+30r4 SIDE.



FIRE ANALYSIS USING ANSYS - THERMAL

e SHELL131:

Is a 3-D layered shell element having in-plane and through-thickness thermal
conduction capability.

The element has four nodes with up to 32 temperature degrees of freedom at
each node.

The conducting shell element is applicable to a 3-D, steady-state or transient
thermal analysis .

SHELL131 generates temperatures that can be passed to structural shell
elements in order to apply thermo mechanical behaviour.

If the model containing the conducting shell element is to be analyzedm
structurally, SHELL181 is a good choice.

| &~ "Location
TEZ

4 TEOT

X = element x-axis ifESYS is not supplied.

¥=element ¥-axis if ESYS is supplied.



FIRE ANALYSIS USING ANSYS - THERMAL

Use Ansys software to analyse thermal behaviour of a steel IPE 100 profile.

— Define Table for ISO834, using GUI interface:
e PARAMETERS+ARRAY PARAMETER+DEFINE OR EDIT

 ADD + Parameter Name=ISO834+ TABLE+ number rows= “n=181"data points to define
curve.

— Alternatively define Table for ISO834, using command line, and “past text in
Windows format” command.
e *DIM,ISO834,TABLE,181,1,1,,,
e *SET,1S0834(1,0,1),0,1,1,,,

e *SETIS0834(1,1,1),20,1,1,,, 0, = 20+345xlog,,(8t +1) [°C]

e *SET,1SO834(181,0,1),10800,1,1,,,
e *SET,1SO834(181,1,1),1109.7,1,1,,,



FIRE ANALYSIS USING ANSYS - THERMAL

e Use Ansys software to analyse thermal behaviour of a steel IPE 100 profile.

— Define extra node to apply environment fire condition. Node 777
e LOADS+DEFINE LOADS+THERNAL+TEMPERATURE+ON NODES+EXISTING TABLE +I1SO834

— Define options for radiation heat transfer and enclosure ID. Is the only form of heat
transfer that can occur in the absence of any form of medium. Thermal radiation is
a direct result of the movements of atoms and molecules (charged particles ). Their
movements result in the emission of electromagnetic radiation.
e RADIATION OPTIONS+SOLUTION OTPTIONS

— Stefan Boltzmann constant: 5.67E-8 [W/m2K4].

— Temperature OFFSET: 273.15

— Space Options: Space NODE + Value : 777

— Enclosure Options: DEFINE + “1”. Radiation

— Define LIMIT CONDITIONS:

e Time : Initial Temperature:
— LOADS+DEFINE LOADS+APPLY+INITIAL CONDITIONS+APPLY
— DEFINE INITIAL CONDITIONS ON NODES+ALL DOFS+20 [2C].
— Apply visibility for shell normal direction, to identify faces where conv
boundary conditions should be applied.
Q  PLOT CONTROLS+ SYMBOLS

— Other symbols: element coordinate system ON




FIRE ANALYSIS USING ANSYS - THERMAL

e Use Ansys software to analyse thermal behaviour of a steel IPE 100 profile.

— Apply convection boundary condition:

e LOADS+DEFINE LOADS+APLLY+THERMAL
— CONVECTION+ON ELEMENTS+UNIFORM+ SELECT ELEMENTS+25 (CONSTANT VALUE)+BULK TEMP.
ON ELEMENTS + EXIST. TABLE (1SO834)
— Apply radiation from node to element surfaces:

e ANSYS 12 does not support GUI boundary conditions, reason why student may introduce
boundary conditions by command.

e Radiation from node space to finite shell element is applied by radiosity solver method,
using RDSF surface load label.

— Finite shell element only supports top and bottom s . e
surface load for radiation: = e
» SFE, element number, element face, RDSF, label for i —
property, property value. Property may be: emissivity=1, T 5
enclosure =2. e

e SFE,ALL,1,RDSF1,1
e SFE,ALL,1,RDSF2,1 S o
e SFE,ALL,2,RDSF1,1 i o et | |

Radiation
 SFE,ALL,2,RDSF,2,1
Q— Define Analysis Type :
2
i l e LOADS+ANALYSIS TYPE+NEW ANALYSIS + Transient.
e Solution Method: FULL.

S

oK Cancel Help




THERMAL ANALYSIS — SIMPLIFIED METHOD EC3

 For unprotected steel structures (simple calculation method):
— Recalling the hypothesis of non massive elements, the increase of temperature
ABa,t in an unprotected steel member during a time interval At <5[s] may be

determined from:
_ O 9 x [Am/V]box

An IV . - Y_T4
Aea,t - KSh T,Oahnet,dAt hnet,d =0o Em & (Tg _TL )+ CZ(Tg _TL) Kan =0 [AM/V]

— Where K, is a correction factor for the shadow effect.
— [Am/V],,, is the box value of the section factor
— A, /Vis the section factor for unprotected steel members.
— Note 1: for cross sections with convex shape (rectangular or hollow sections), Ksh

equals unity.
— Note 2: Ignoring shadow effect (Ksh=1) leads to conservative solutions.

' | N i
t i ] T
r ! | i
=g é 4
|Pb An_ perimeter Am/V =1/t An _ surface exposed to fire An_ (b+h)
Lo V  cross-section area \ Ccross- section area V  cross-section area



THERMAL ANALYSIS — SIMPLIFIED METHOD EC3

e Solution without Ksh by a simple program (ex: fortran programming language)

*dkdkk*tn=0, tetan=273.15, deltat=5, sec=387 (IPE100)

do 10 i=1,itfinal+1
tetav=tetan 1000 1
tv=tn
tetag=(20+345*log10(8*tv/60+1))+273.15
flux=0.5*0.0000000567*((tetag)**4-(tetav)**4)+alfa*(tetag-tetav)
cap=ca(tetav)
tetan=tetav+(sec*flux*deltat)/(ro*cap)
tn=tv+deltat
write(1,*)ty, flux, tetan

10 continue

stop

end

‘—ISOSSA —IPE100 IPE200 —IPE300 =——IPE400 =——IPE500 —IPE600

funtion ca (tetav)
if (tetav.le.873.15) then
ca=425+0.773*(tetav-273.15)-0.00169*(tetav-273.15)**2+ .0.00000222*(tetav-273.15)**3
else if (tetav.gt.873.15.and.tetav.le.1008.15) then
ca=666+(13002/(738-(tetav-273.15)))

else
ca=545+(17820/((tetav-273.15)-731))
endif
return
end



FIRE ANALYSIS USING ANSYS - THERMAL

e Comparison results for thermal analysis:
— Effect of radiation and convection.

— Comparison with experimental results.

Temperature [°C]

-|50834 ==ANSYS Convection
==ANSYS convection+radiation ===ANSYS Radiation
EC3 (with Ksh) EC3(withoutKsh)

-—=FURNACE —Experiments
1000,0 e —ANSYS Coni®
900,0 - - "’ﬁNSYS;:onvectianHadiatian —ANSYS’Radiaticn
EC3 (with Ksh) EC3(withoutKsh)
800,0 - FURNACE ==Experimental{26-03-2003} Y

Tempo [min]



FIRE ANALYSIS USING ANSYS - THERMAL

Animation for radiation load:
— Uniform heating.
— Heat flux arrives from enclosure, directly to top and bottom surface elements.

&

Animation for fire thermal load(radiation+convection):
— Non-uniform heating.

— Heat flux arrives from enclosure, by convection and radiation. using ton. bottom
and lateral surface elements. '




INTRODUCTION TO COMPOSITE STEEL AND CONCRETE

Structural elements normally used:

Beams.

- DHEO T

Objective:

Synergy of mixing two different types of materials, increasing composite material
properties.

Minimize the effect of weakness for each material.

Positive aspects of Steel:

High strength to compression and tension.

Small ratio weight strength in comparison with concrete.

High quality material reliability, which may lead to reduce safety factors.
No intensive workmanship

Negative aspects of steel:

Stability problems when submitted to compression, with non-profit high
compressive strength.

Corrosion problems, if not protected.
Strength reduction at elevated temperatures.
High cost due to market values, transport,etc.



INTRODUCTION TO COMPOSITE STEEL AND CONCRETE

e Positive aspects of Concrete:
— High strength in compression.
— Facility to be cast in irregular geometry forms.
— Low cost.

 Negative aspects of Concrete:
— Low strength in tension.
— High ratio weight strength.
— Necessity to have formwork (“cofragem”) and centering (”cimbres”.
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INTRODUCTION TO COMPOSITE STEEL AND CONCRETE

e Steel function in composite construction elements (pipes filled with concrete):
— May be used to mould concrete;
— May be used to confine concrete;
— Increase bending resistance;
— Also contributes to the load bearing resistance in compression .

e Steel function in composite construction elements(encased or partial encased):
— Contribute to section resistance due to bending, compression and shear.

e Concrete function in composite construction elements (pipes filled with concrete):
— Ensures the major contribution to the compression load bearing resistance.
— Helps to sustain instability effects.
— Helps to increase fire resistance.

e Concrete function in composite construction elements(encased or partial encased):
— Contribute to section resistance due to compression.
— Helps to protect steel from corrosion.

@— Increase fire resistance.

Po



INTRODUCTION TO PARTIALLY-ENCASED SECTIONS

e Partially-encased beams are composite members:
— Presents two or more different materials;
— Different types of construction and design solutions;
— Used with reinforcement stirrups and rebars;
— Possible structural link to slab.

e Section resistance up to Ultimate Limit State (plastic section):

— Disregard the behaviour of concrete in tension.

— Assume to consider the design compression strength of concrete equal to 85% of
cylindrical compressive stress (BR).

— Assume to consider the plastic behaviour of steel in compression and in tension
(Mpl,a).

— Assume to consider the resistance of rebars with area equal to Ar and yield stress
equal to “fyr”.

2f t (0.5h e, f
M, =M, - A 2h1 cu) + B 2be ,(0.5e, +0.5h, —e, )+ A (f, — B fh—2e,)

M, =M, +5:2be, (05, +0.5h —e, )+ A(f, -5 kh—2e,)

2

Po



BONDING OF PARTIAL ENCASED ELEMENT

e For thermal analysis:

— Partially encased elements may be subjected to fire conditions (IPE100 hot rolled-
C20/25-Reinf. Steel with 8 [mm] diameter rebar):
e |SO 834 fire nominal curve applied to the external surfaces of the 3D model (four sides).

e Radiative and convective heat flux between fire environment and partially encased
elements.

— Non linear unsteady state thermal analysis will be applied, based on incremental
time procedure.

— Heat flux between concrete and steel will be controlled by conductance. Perfect
contact could be also considered. This property is defined as the ratio of Heal flux

to temperature variation between both materials. &
h [wim?C] ‘ =>=Contacto com carga mecanica | = f_i — - .
-~ 2 Q=—=-KV() 77~
Interface ¥ ' 160 1 R SR T
: Concrete \ AL
120 A

Hé”:COND(AT) B

80 Thaeii
Vo e
| —
. %
_ f 0
[2] - Ghojel, J, Experimental and analytical 0 100 200 300 400 500 600 700
___/’ technique for estimating interface thermal Temperatura no ago [°C]
conductance in composite structural elements . .
under simulated fire conditions, Experimental Heat flux or thermal flux, sometimes also referred to as heat flux density or heat flow rate
Thermal and Fluid Science, No. 28, 2004, pp. 347- intensity is a flow of energy per unit of area per unit of time. In Sl units, it is measured in
354 [W/m2]. It has both a direction and a magnitude so it is a vectorial quantity.



THERMAL MODELLING OF PARTIALLY-ENCASED ELEMENT

e Steel model: —

— Hot rolled profile: Shell 131, 4 nodes, in-plane and
through thickness conduction capacity. In-plane linear &
shape functions (2x2 integration scheme), through
thickness (assuming no temperature variation, 1
integration point).

] n,rhnet,r + 7n,chnet,c
B = 25(6, —6,)

e Reinforcement: i, 56710°|(0, +273)' - (0, + 273)'|
— Link 33, 2 nodes, with ability to conduct heat 1z
between nodes. Linear shape functions with exact [P ven
integration scheme. N i f
. Concrete model: y<777 B A
— Solid70, 8 nodes, 3D conduction capacity. Linear T e
shape functions for each orthogonal direction (2x2x2
integration scheme). oW

e Bond model (concrete and steel):

— Combine39, non linear spring, 2 nodes, generalized

temperature difference Versus heat  flux

0 characteristics. No mass or thermal capacitance is
Z

_ considered.
ipb



THERMAL MODELLING OF PARTIALLY-ENCASED ELEMENT

Material Properties for concrete (temperature
dependence):

— Specific Heat for dry concrete of Siliceous and
Calcareous aggregates:
C,[J /kgK]=900 ;20[°C]<@<100[°C]
=900+ (9 -100) ;100[°C]< & < 200[°C]
=1000+(6—200)/2 ;200[°C]< 6 < 400[°C]
=1100 ;400[°C]< @ <1200[°C]
— Thermal Conductivity of Siliceous and Calcareous
aggregates:

 Determined between lower and upper limit values.

e The value of thermal conductivity may be set by the
National annex within the range defined by lower and
upper limit. Annex A is compatible with the lower limit.

2, [W /mK]=1.36 —0.136(6/100) + 0.0057(6/100)’ ;20[°C]< & <1200[°C]

— The variation of density with temperature is influenced
by water loss and is defined as follows

plkg/m®]= pye  ;20PCl< o <115[C]

= Pyec (1-0.02(6-115)/85) ;115[°C]< 6 <200[°C]
2 = Poec (0.98—0.03(6 —200)/200) ;200[°C]< @ < 400[°C]
= pooc (0.95-0.07 (9 - 400)/800) ;400[°C]< @ <1200]°C]
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THERMAL MODELLING OF PARTIALLY-ENCASED ELEMENT

e How to build the finite element model:

— Geometric modelling to define:
* Finite shell elements, using keypoints, lines and areas;
* Finite solid elements, using keypoints, areas and volumes;

* Finte combine element, using elements, by off set distance.

Time = 3600 [s]




CONSITUTIVE MODEL FOR CONCRETE

e Constitutive modelling of concrete in ANSYS:

— Failure criteria (surface): O Ty Te| |On O O
* Described in terms of the invariants of the stress tensor; Ty Oy Ty |=| 0 0, 0+
e Dependent of the hydrostatic component of the stress (ch). be Ty Oz 0 0 o
(The stress tensor can be separated into two components. |5 -0, T, r,,
One component is a hydrostatic stress that acts to change + o, -0, ;
the volume of the material only. The other is the deviatoric Y W vz
Ty Tyz O,, — 0y

stress that acts to change the shape only).

— Continuum mechanics provides a mean of modelling at
the macroscopic level the material damage that occurs at
the microscopic level.

— Willam and Warnke (1974) developed a widely used
model for the triaxial failure surface. The failure surface
may be represented in principal stress-space of
unconfined plain concrete.

. F
— Failure surface: f——S >0

 “F’ represents a function of the principal stress state. 4

e “S” is the failure surface, written in terms of 5 input

@ parameters. .
= ug.n H H : '/
e “fc” represents the uniaxial compression stress. 70 =0,=0,



CONSITUTIVE MODEL FOR CONCRETE

e For each domain, independent functions describe F and S:

— First: Compression Compression Compression: L 20, 3
— Second: Tension Compression Compression: 0,200,220,
— Third: Tension Tension Compression: o,20,>202>0,
— Fourth: Tension Tension Tension: 0,20,>0,>0
e First domain: 026,220,220,
— The function F assumes the following formula:
1 ' i % % 7 5
F:Fl = — lGI —G 3 }_ +|{G: —G3 _:|_ +|[G_:; — 0 _:|_ }/:
vio
— And the failure surface is defined by:
_— 2r, (1‘3: - 1‘1:jcosn +15(2r; — 15 }[4(1‘:2 —1‘1: ) cos? n + 51‘1: —-11‘11':]%
= ]. = 7 7
M5y —1‘12 Jeos 1 + (1) — ..'-’*1'1}2 ) 9
) ) Ip=ap tajs tajs”
26, -G, —Gy ) A
COST| = — - — 7 15 =bg +bi€ +b,rE~
.'Ij _ ) w2 _ . \ . — s 2
N 3, f.
* Where the terms of this expression are defined by:
@ — The coefficients a0, al, a2, b0, b1, b2 are determined as a function of the known properties of
-~ concrete (Uniaxial tensile strength ft, Uniaxial compression strength fc, biaxial compression

|Pb strength fcb) .



CONSITUTIVE MODEL FOR CONCRETE

Second domain: 06,2020, 20;

— The function F assumes the following formula:

1 . . , il Fil
F=F, Z,—Fjj +03 +10, —G;__]‘]X

1,"'15
— And the failure surface is defined by:

4

S=§, = | ! | 2p>(p3 —pi)eosn +po(2p; —p2)[4(p3 —pi)cos N +5p7 —4pip)
) f; ) 4(1)% —pf}cosjn +(p> —Zplj:
* Where the terms of this expression are defined by:

— The coefficients a0, al, a2, b0, b1, b2 are determined as a function of the known properties of

concrete. .
P =ag +E’l]_;{ +El:;if -

Py =bgy +byy +bsyy

G, 403

O 3f,

— If the failure criteria is satisfied then cracks at the plane normal to the principal
stress ol occurs.

/



CONSITUTIVE MODEL FOR CONCRETE

Third domain: ¢,20,2020,

The failure criteria is defined by the following functions:
F ZF_:;, =0, 1=1.2

The failure surface is dpcrri?e_d hv:
S=S;=—|1+ o3
- fl $,(6,.0.03))

If the failure criteria is satistied tor i=1,2, cracks at normal planes to the principal
stresses 01 and 02 occur.

1=1.2

If the failure criteria is only satisfied for i=1, then cracks will only occur at the plane
normal to the principal stress o1l .

Fourth domain: 6,20,20;,20

The failure criteria is defined by the following expression:
:F::F_izﬁl' 1=1.2.3

he failure surface S is defined by g f,

D fc
f the failure criteria is satisfied for i=1,2 e 3, then cracks occur at the planes normal
to the principal stresses 01 ,02 and o3.

Otherwise if criteria is satisfied for i=1,2, then cracks occur at the planes normal to
the principal stresses ol e 62. finally if criteria is only satisfied for i=1, then cracks
will only appear at the plane normal to the principal stress o1 .



SOLID 65 (CONCRETE FINITE ELEMENT - ANSYS)

SOLID 65:

The finite element has tri-linear interpolating functions
8 nodes with three degrees of freedom per node.

The constitutive model described previously allows cracking in three orthogonal
directions for each integration point of the element. The numerical integration
schema uses Gauss integration with 2x2x2 integration points.

Initially, concrete is assumed as being an isotropic material. As the loading is
increased, when a crack occurs at a specific point of integration, the crack is
accounted for by the modification of the mechanical properties of the material,
which means that it is modeled as a distributed crack or a smeared crack. The
presence of a crack at an integration point is represented through the introduction
of a weak plane at the direction normal to the crack.

Additionally the model allows the inclusion of a shear transfer coefficient (). This
coefficient represents the shear strength reduction factor for the post-cracking
loading, which causes a sliding parallel to the crack plane. This shear transfer
coefficient can assume values between:

* 0-smooth crack with total lost of shear transfer capacity

* 1—irregular crack without lost of shear transfer capacity.

* Best practice:

— Shear transfer coefficients for an open crack=pt=0.25;
— Shear transfer coefficients for a closed crack=3c=0.90.



SOLID 65 (CONCRETE FINITE ELEMENT - ANSYS)

SOLID 65:

— Through the inclusion of a stress relaxation factor, it is possible to accelerate the
solution convergence process when cracking is imminent. This stress relaxation
factor does not introduce any modification in the stress-strain relation at the post-
cracking regime. After the convergence to the final cracked state, the stiffness
normal to the failure plane is equal to zero.

— When the material evaluated at an integration point fails in axial, biaxial or tri-axial
compression, the material is assumed as crushed at this point.

— Crushing is defined as the complete deterioration of the structural integrity of the
material, and the stiffness contribution of this integration point for the element is
ignored. The stiffness normal to the failure plane is equal to zero.



HOW TO RUN FIRE ANALYSIS (THERMAL + MECHANICAL)

e RUN THERMAL ANALYSIS, BASED ON RADIATION AND CONVECTION
— FILE.RTH should contains time history results.

e SWITCH ELEMENT TYPE: FROM THERMAL TO STRUCTURAL.
— Correct element options, real constants, materials, etc.

— Please consider the following:
e SOLID 70 will be automatically modified to SOLID 185. Please convert SOLID 185 to SOLID
65.
— Remember for SOLID 65: Keyoption (8) =2 and Keyoption (3)=2
e SHELL 131 will be modified to Shell 181.
— This element requires two real constants to substitute shell layer thicknesses.
* COMBINE 39 will be modifed to COMBINE 39 .

— Modify the real constant associated with this element, introducing force, relative displacement
to model bond behaviour.

e LINK 33 will be automatically modified to LINK 180. Please convert LINK 180 to LINK 8.
— Do not modify the real constant associated with this element.
— Modify the element option related to the type of degree of freedom. Remove TEMP and use

UX, UY, UZ.
— Solution will be performed with STEP LOADS.
@  Build the step load procedure for each time STEP, using:

— The results of thermal analysis.
|Pb — Introducing mechanical load.



HOW TO RUN FIRE ANALYSIS (THERMAL + MECHANICAL)

e Automatic switch element type and modification procedure.

ELEMENT THERMAL AUTOMATIC  MANUALLY MECHANICAL
TYPE ANALYSIS SWITCH CREATE ANALYSIS

SHELL 131 SHELL 181 SHELL 181
SOLID 70 SOLID 185 =

COMBIN 39 COMBIN 39 COMBIN 39
LINK 33 LINK 180 =
SOLID 65 SOLID 65
LINK 8 LINK 8




HOW TO RUN FIRE ANALYSIS (THERMAL + MECHANICAL)

GUI command from menu:

— LOAD STEP OPTIONS, TIME FREQUENCY

— PP T

A Time and Tire Shep Opbions

end Teme Shep Option
j'll'-'II.J T-mnﬂ end of load Hep 35
JCELTIME Time siep size &)

(KBL)  Stepped or samped b
T Ramged
™ Sepped

JAUTOTS] Aubernabis brng lippeng

™ O

" OFF

v Piog Cheden
{CELTIRE] Mlrumagrn beme Hep sine

hlaerrum tene slep 1se

— DEFINE LOADS, APPLY , STRUCTURAL, TEMPERATURE FROI\/I THERMAL ANALYSIS

— LOAD STEP OPTIONS, WRILE LS FILE, 1, (CRIA FICHEIRO FILE.S01)

N\ Write Load Step File 52
P

[LSWRITE] Write Load Step File (Jobname.5n)

LSNUM Load step file number n
Help ‘

0K Apply Cancel ‘




HOW TO RUN FIRE ANALYSIS (THERMAL + MECHANICAL)

e Command lines to produce load step files.

— TIME, 60 /COM,ANSYS RELEASE 12.0.1 UP20090415  14:33:19 06/10/2010
_ /NOPR
— LDREAD,TEMP1,1,,, file','rth',"" JTITLE,
_LSNUM= 1
— LSWRITE,1 ANTYPE, 0
NLGEOM, 1
— TIME, 120
DELTIM, 60.0000000 , 1.000000000E-02, 60.0000000
— LDREAD,TEMP1,2,,, file','rth'"" iﬂgs 00
TIME, 3600.0000000
— LSWRITE,2 TREF, 0.00000000
ALPHAD, 0.00000000
- .. BETAD, 0.00000000

DMPRAT, 0.00000000

, 56,UX , 0.00000000 , 0.00000000

— LDREAD,TEMP,1,59,,,'file','rth'," ' , 56,UY , 0.00000000 , 0.00000000
, 56,UZ , 0.00000000 , 0.00000000

ICQ\WA/DRITE CQ
— LOVVNIIE, 0T

1,TEMP, 1, 247.669359

,  1,TEMP, 2, 162.498246
TIME, 3600 ,  1,TEMP, 3, 168.668701
: ,  1,TEMP, 4, 251.629346
— LDREAD,TEMP,1,60,,,'file','rth","’
BF, 471,TEMP, 29.6566190
— LSWRITE,60 BF, 472,TEMP, 29.6607315

BF, 473,TEMP, 29.9317361
/GOPR




HOW TO RUN FIRE ANALYSIS (THERMAL + MECHANICAL)

e GUI command from menu:
— SOLUTION, SOLVE, FROM LS FILES

File.S02

File.SO1

File Select List Plot PlotCtrls WorkPlane Parameters Macro MenuClrls Help

D|@| a8l 8l 7| H
ANSYS Toolbar

SAVE_DB| RESUM_DB| QuIT| POWRGRPH|

EERE]

ANSYS Main Menu

Bl Preferences
Preprocessor
B Solution
Analysis Type
B Fast Sol'n Optn
® Define Loads
Load Step Opts
& Physics
SE Management (CMS)
B Results Tracking
B Solve
& Current LS

=

ELEMENTS

[ =l e

B s
B Partial Solu

& Adaptive Mesh
Manual Rezoning
& Multi-field Set Up
ADAMS Connection
® Radiation Opts
Diagnostics

A\ Selve Load Step

General Postproc
TimeHist Postpro
Topological Opt
ROM Tool
Design Opt

Prob Design
Radiation Opt

[LSSOLVE] Solve by Reading Data from Load Step (LS) Files
LSMIN Starting LS file number

LSMAX Ending LS file number

LSINC File number increment

elplefplel=[s|tloleltlolezlzalaz]a|e

Run-Time Stats cancel |
& Session Editor
Finish
- |
|- & vt Power Managem 2 x
\ Pick a menu item or enter an ANSYS Command (SOLUTION) mai=1 \Wpeﬂt real=2 csys=0 \ secn=1 | ~ Thzr(ips EffLEC;;°geByj‘:téha heen mm:jE



