Sumário

- Cap5. Funções de Várias Variáveis.
 - Intersecção de superfícies; equação cartesiana de uma reta em 3D.
 - Distância entre dois pontos em 3D. Equação da esfera.
 - Equação cartesiana de uma circunferência contida num plano paralelo a um dos planos coordenados.
 - Equação de um cilindro circular reto cujo eixo de simetria é um dos eixos coordenados.
 - Equação de um parabolóide circular reto cujo eixo de simetria é um dos eixos coordenados.
 - Cálculo aproximado da derivada parcial de uma função z = f(x, y) num ponto do seu domínio, e significado geométrico.
 - Equações das retas tangentes ao gráfico de uma função z = f(x, y) num ponto (a, b) contidas nos planos x = a e y = b.

Leitura e Vídeos:

- Sebenta teórica, Capítulo 5: páginas 7-17.
- Apontamentos complementares, colocados na semana 15: páginas 1-7.
- Vídeos do cap 5, colocados na página da disciplina, Semana 14.

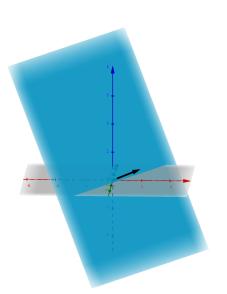
O essencial

Funçois de Dues Vanávers

$$Z = \int (x,y) = 2xy - \sqrt{x+y}$$
Dominio: $\int (x,y) \in \mathbb{R}^2 \cdot x+y \ge 0$
Gráfico: $\int (x,y,2) \in \mathbb{R}^3 : Z = \int (x,y) \int$
Equação do Plano: $ax + by + Cz = d$
vetor $(a,b,c) \perp plano$
• Exemplo
 $2x - y + z = 1 : plaho$
 $(2, -1, 1) : Vetor perpendicular
ao plano$

Mário Abrantes _____

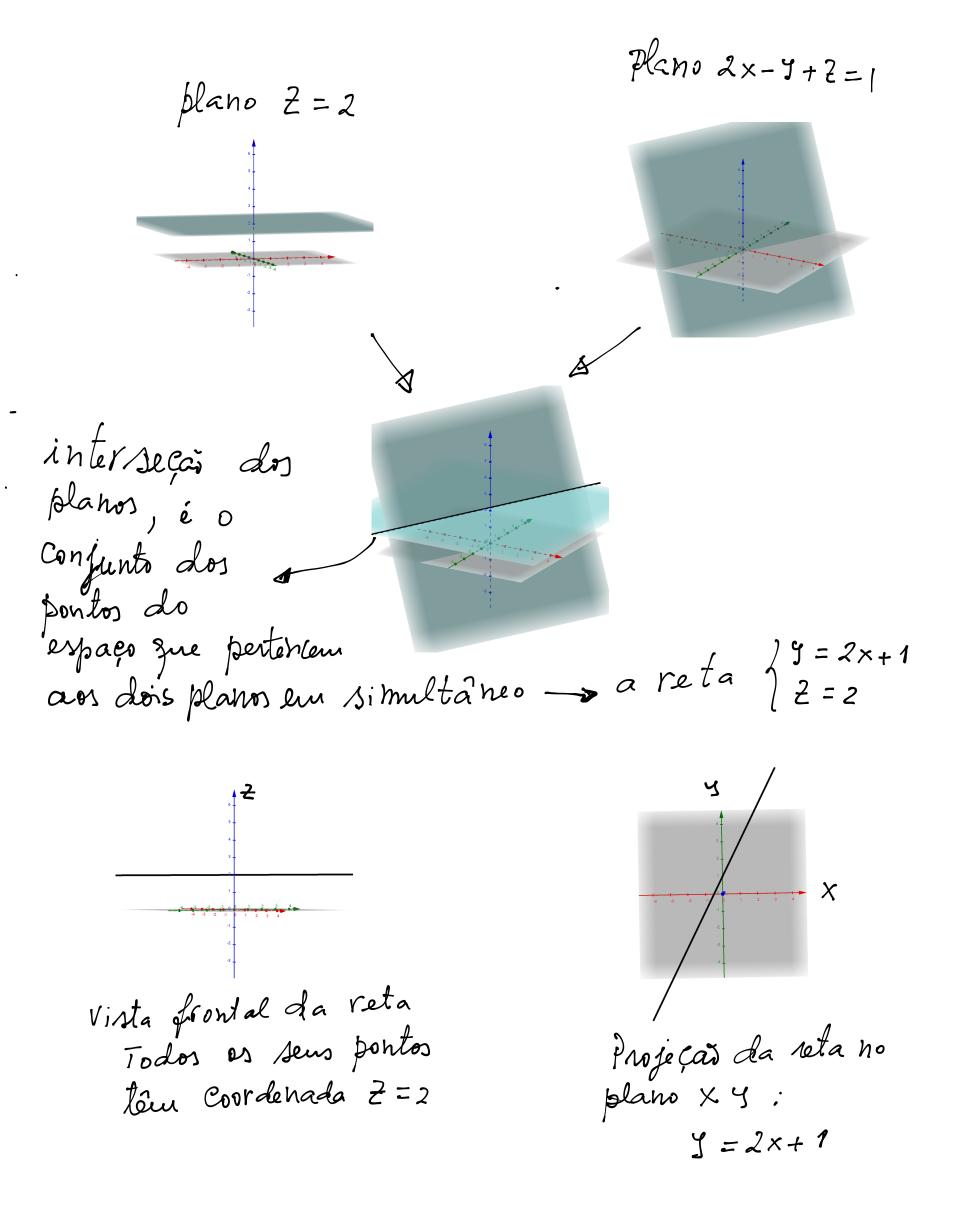
http://www.ipb.pt/~mar/



Notar que (2,-1,1) são as coordenadas da extremidade do vetor. A origem do vetor tem Coordenadas (0,0,0)

(2,-1,1) (0,0,0)

Representação Cartesiana da reta de finida pela intersecção dos dois planes, 2x-JfZ=1 e Z = 2. $\begin{cases} 2 \times -3 + 2 = 1 \\ 2 = 2 \end{cases} \stackrel{(=)}{=} \begin{cases} 2 \times -3 + 2 = 1 \\ - - \end{cases}$ (=) { J = 2×+1 → projeção da reta no plano × Y 2 = 2 Pontos da reta: $(X, 2X+1, 2), X \in \mathbb{R}$ Nas figuras seguintes temos un esboço dos graficos das entidades geométricas envolvidas neste sistema linear de equaçõo.



Equação da Reta

$$\begin{cases}
Y = 2x + 1 \longrightarrow informa - mis poble as
Coordenados x y dos
2 = 2 pontos da reta
$$\begin{cases}
x, y, z \\
z dos pontos da reta
\end{cases}$$

$$(x, y, z) : os pontos do espaço 30 que petercem
a reta, são todos aqueles cujas
Coordenadas x, y, z satisfazem
ambas as equação.
$$(x, y, z) = (x, 2x + 1, 2)$$
Distância entre 2 pontos (a,b), (x,y) em 2D
Seja R ema distância

$$y = -\frac{1}{x-a};$$

$$(x-a)^2 + (y-b)^2 = R^2$$

$$R = \sqrt{(x-a)^2 + (y-b)^2} = R^2$$
Distância$$$$

Tanto Vale

$$(x-a)^{2} + (Y-b)^{2} = R^{2}$$
Como

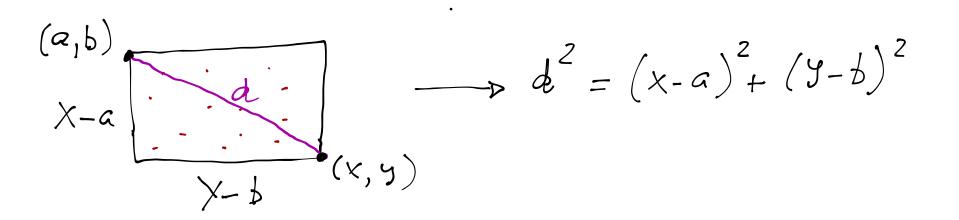
$$(a-x)^{2} + (b-3)^{2} = R^{2}$$
Esta é a equaças da Circun ferência
de Centro (a,b)
² de raio R.
Sí as Coordenadon don pontos (x, Y) à distancia
R de (a, b) é que a Verificam.
A distância R entre os pontos (a,b), (x, y)
é $R = \sqrt{(x-a)^{2} + (Y-b)^{2}}$
Distância entre dois pontos (a,b,c), (x, y, 2)
en 3D

$$(x, 3, 2)$$

$$(a,b,c)$$

$$(x, b,c)$$

$$(x, b,c)$$



$$R = \frac{1}{2 - c} \qquad d^{2} + (2 - c)^{2} = R^{2}$$

$$d = \frac{1}{2} (x - a)^{2} + (y - b)^{2} + (2 - c)^{2} = R^{2}$$

$$E gna cas da espera de entro : (a, b, c)$$

$$Fairo : R = Lo distância entre os pontos (a, b, c), (x, y, z)$$

$$\frac{E_{xercicivs}}{1) \text{ Dual a distância entre os pontos (1,-1,1) e}}$$

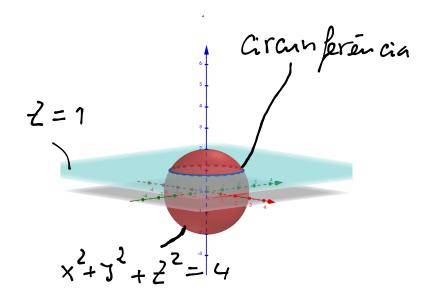
$$\frac{(2,1,-1)?}{\text{Responte : D: distância}}$$

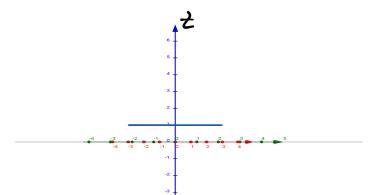
$$D = \overline{((1-2)^2 + (-1-1)^2 + (1-(-1))^2}$$

$$= \sqrt{9} = 3$$
2) Escrever a equação cantesiaha da esfera de centro (-2,1,1) e raio $\sqrt{3}$.

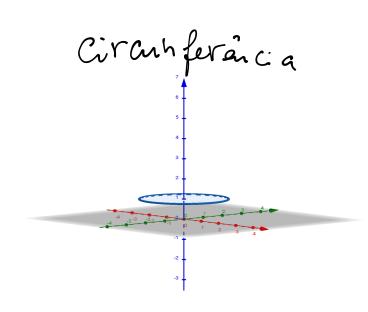
Resporta; $(x-a)^{2} + (y-b)^{2} + (z-c)^{2} = R^{2}$ $(=) (x - (-2))^{2} + (y - 1)^{2} + (z - 1)^{2} = (x - 1)^{2}$ $(= 3 (X+2)^{2} + (Y-1)^{2} + (Z-1)^{2} = 3 \#$ 3. Qual a entidade geométrica representada pelo sistema de equaçõos não linear $\begin{cases} \chi^{2} + y^{2} + z^{2} = 4 ? \\ y = 1 \end{cases}$ Rosporta · Os pontos pertencentes à entidade geométrica sais todos aqueles eujas coordenadas satisfazem ambas as equações. $X^{2} + J^{2} + Z^{2} = 4$ Esfera de centro (0,0,0) e raio 2 J=1 Plano perpendicular ao lixo dos y'No ponto (X, Y, 2) = (0, 1, 0)

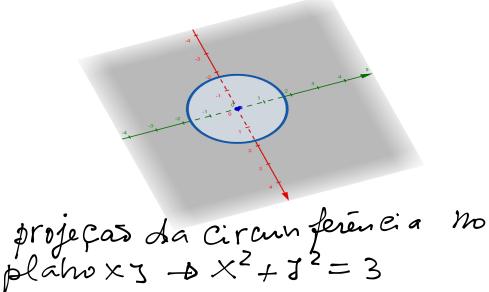
Os pontos commis às duas superfícies représentam una circunferencia. $\begin{cases} x^{2} + y^{2} + z^{2} = 4 \\ y = 1 \end{cases} \xrightarrow{(=)} x^{2} + 1 + z^{2} = 4$ $\langle = \rangle \begin{cases} \chi^2 + \xi^2 = 3 \\ \gamma = 1 \end{cases}$ Pontos da Circonferência $(X, 1, \pm \sqrt{3} - X^2), -\sqrt{3} < x < \sqrt{3}$



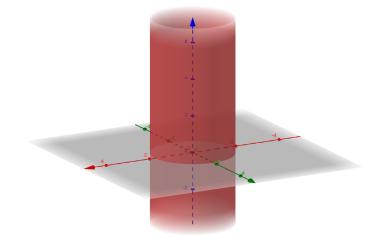


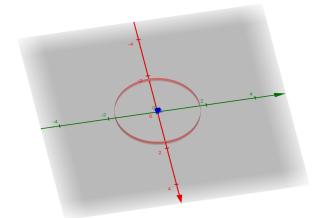
vista lateral da circun ferência; contida no plano Z=1





5. Qual a superficie representada pela equação $x^2 + y^2 = 3$? Resposta Cilindro Circular rets que tem o lixo dos 22 censo eixo de simetria, e tem secção circular com raio 3

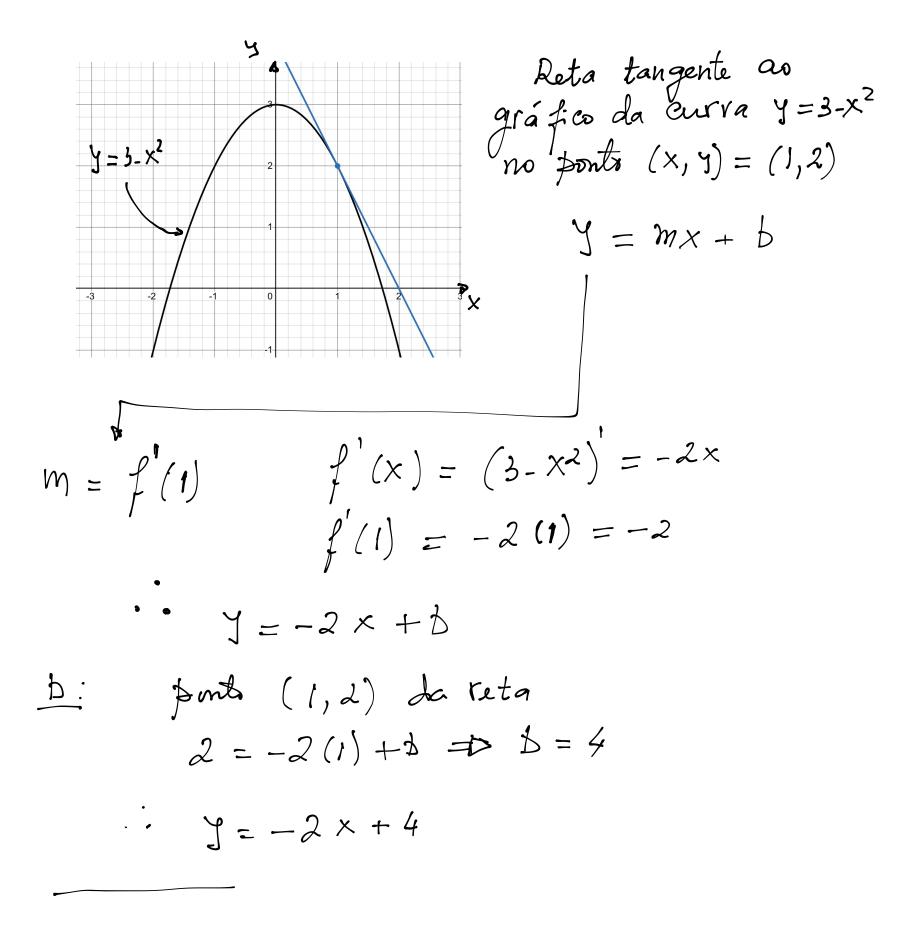




Projeção do Cilindro no plano Xy

 $\int \frac{2}{\chi^2 + y^2} = 3$ $\int \frac{2}{z^2} = 0$

Anal 0 declive da reta tangente à curva $f(x) = 3 - x^2 no ponto$ (x,y) = (1,2), l gual o seu significado? Resporta

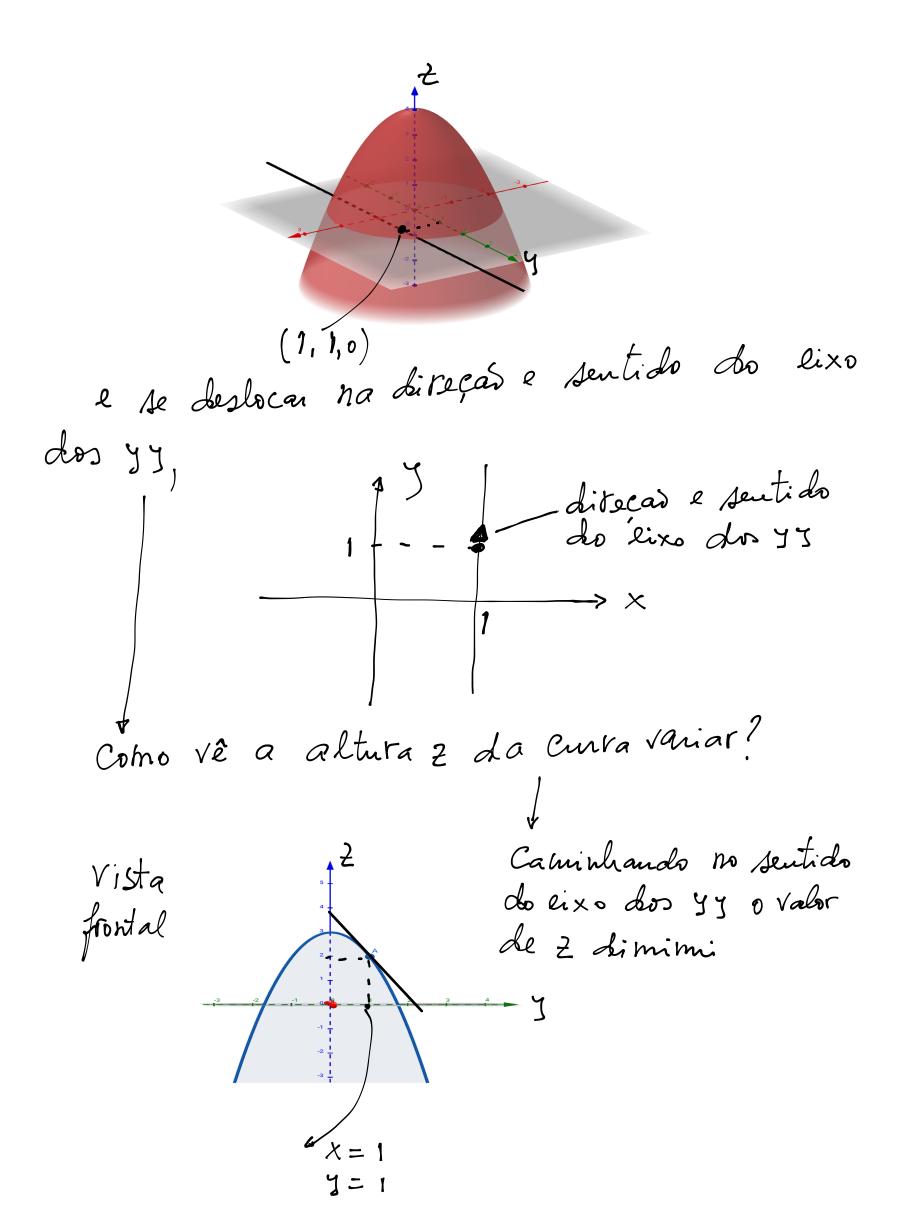


0 declive da veta tangente é -2: · O seu s'gnificado analítico é o seguinte: Je vanarmos X de un valor poqueno com relaçoi a x = 1, a variação de y

Dada a superficie $f(x, y) = 4 - x^2 - y^2$ 7. Calcular (a) A taxa de variação de f(x,y) no ponto (1,1), na direção do lixo dos yy (b) O mesmo de (a), mas na direção do lixo dos XX. Resoluçai (detalhada) bráfico da Superf'ie

 (α) Vista de cima Х leta no plano Z=0, > Coordenadas da neta perpendicular as eixo dos x x no ponto x=1 $(1, Y, 0), J \in \mathbb{R}$ Qual a livha que alguém que se desloque sobre esta reta observa na superficio a vermelho? Observa a parábola a azul. Rual o sistema de equações que define esta parábola? $\begin{cases} 2 = 4 - x^{2} - y^{2} \\ x = 1 \end{cases} \begin{cases} 2 = 4 - 1^{2} - y^{2} \\ x = 4 - y^{2} \\ x = 1 \end{cases} \end{cases} \begin{cases} 2 = 4 - 1^{2} - y^{2} \\ x = 4 - y^{$

· Se alguér se colocar no ponto (x, y, 2) = (1, 1, 0)



- · Calculo de declive da reta tangente à parábola contida no plano 2=1
 - · Calculo Exato Martendo x fixo x = 1 $z = 4 - x^2 - z^2$ Calculations a derivada parcial de 2 em orden az; $\frac{\partial z}{\partial y} = \lim_{\substack{\lambda_{y} \to 0}} \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y}$ (x f'xo; y varia) $= (4 - x^{2} - y^{2})'_{y} = (4)'_{y} - (x^{2})'_{y} - (y^{2})'_{y}$ (4)'y = 0 $(X^2)'_{J} = 0$, porque supomos X Constante $(y^{2})_{y} = 23$

 $\frac{\partial t}{\partial y} = -2y$ O valor da derivada parcial no ponto (x, 3)=(1,1) l $\frac{\cot}{\partial \tau}(1,1) = -2(1) = -2$ Este é o declive da reta targente na figura da página anterjor.

-2.1
$$\varepsilon$$
 priximo do Vahr Exacto-2 Caladed
antes.
 $Z'_{y}(1,1) = -2$ permite-nos fazer cálados
do seguinte tipo
 $\frac{\Delta Z}{\Delta y} = -2 => \Delta Z = -2\Delta y$
Se ay for poqueno, a correspondente variaçãos
de 2 ε $\Delta Z = -2\Delta y$, o que correspondente variaçãos
de 2 ε $\Delta Z = -2\Delta y$, o que correspondente variaçãos
de 2 ε $\Delta Z = -2\Delta y$, o que correspondente variaçãos
de -2 unidados por unidade de variação de 3.
(b)
A taxa de variação de f
no ponto (1,1), na direção do eixo
do xx.
 $Z'_{x} = (4 - x^2 - y^2)'_{x} = (4)'_{x} - (x^2)'_{x} - (y^2)'_{x}$
(9 fixo)
 $Z'_{x} = -2x$
 $Z'_{x}(1,1) = -2<0$
No ponto (x, y) = (1,1) a função Z
decesse a taxa de -2, na direcção
do eixo do xx.

Exercice o

$$\begin{aligned}
\overline{Z} &= \Im \left(2 \times -6 \Im\right)^{\frac{1}{2}} \\
(a) Calcular as derivadas parciais de primeira ordem, $\frac{\partial 2}{\partial x} = \frac{\partial 2}{\partial y} \\
(b) Como Varia a funças no ponts $(x, y) = (5, 1)$ do der docurnio (i) Na direças do eixo dos \Im ?
(*ii*) Na direças do eixo dos \Im ?
(*iii*) Na direças do eixo dos XX ?
(*iii*) Na direças do eixo dos XX ?
(*iii*) $\frac{\partial 2}{\partial X} = (\Im \cdot (2X - 6\Im)^{\frac{1}{2}})_{X}^{1} \\
= (\Im)_{X}^{1} \cdot (2X - 6\Im)^{\frac{1}{2}} + \Im ((2X - 6\Im)^{\frac{1}{2}})_{X}^{1} \\
= (2\pi)_{X}^{1} - (2\pi - 6\Im)^{\frac{1}{2}} = \frac{\Im}{\sqrt{2x - 6\Im}} \\
\frac{\partial 2}{\partial X} = \Im (2X - 6\Im)^{-\frac{1}{2}} = \frac{\Im}{\sqrt{2x - 6\Im}}
\end{aligned}$$$$

$$\frac{\partial z}{\partial y} = \left(y \cdot (2x - 6y)^{1/2} \right)_{y}^{'}$$

$$= (y)_{y}^{'} \cdot (2x - 6y)^{1/2} + y \left((2x - 6x)^{1/2} \right)_{y}^{'}$$

$$\begin{bmatrix} (2x - 6y)_{y}^{'} = 1 \\ ((2x - 6y)^{1/2})_{y}^{'} = \frac{1}{2} (2x - 6y)^{\frac{1}{2}} (2x - 6y)_{y}^{'} \\ = -3 (2x - 6y)^{\frac{1}{2}} = -6 \end{bmatrix}$$

$$\frac{\partial z}{\partial y} = (2x - 6y)^{1/2} - 3 (2x - 6y)^{\frac{1}{2}}$$

$$\frac{\partial z}{\partial y} = (2x - 6y)^{1/2} - 3 (2x - 6y)^{\frac{1}{2}}$$

$$\frac{\partial z}{\partial y} (5, 1) = (2(5) - 6(15)^{1/2} - 3(2(5) - 6(15))^{\frac{1}{2}} \\ = 4^{1/2} - \frac{3}{4^{1/2}} = 2 - \frac{3}{4} = \frac{1}{4} > 0$$
No points $(x, y) = (5, 1)$ a funça z Cuesce
a taxe de $\frac{1}{2}$ ha di reçai de z her di reçai do
lixo don xx, m points $(5, 1)$

$$\frac{\partial z}{\partial x}(5,1) = \frac{1}{\sqrt{2(5)-6(1)}} = \frac{1}{2}$$

No ponto (X,Y) = (5,1) a função Z cresce à taxa de 1/2 na deireção de lixo dos YJ.