Função Quadrática

$$f(x) = ax^2 + bx + c$$
 $a, b, c \in \mathbb{R}$.

Orientação da Concavidade

Para cima, se a > 0; para baixo, se a < 0 (ver gráficos na figura 1, das parábolas do exercício 1).

Fórmula Resolvente

Raízes da função $f(x) = ax^2 + bx + c$.

$$ax^2 + bx + c = 0 \Leftrightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

Sendo as raízes

$$x_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}, \quad x_2 = \frac{-b + \sqrt{b^2 - 4ac}}{2a},$$

verifica-se o seguinte:

• A abcissa do vértice da parábola, x_v , é

$$x_v = \frac{x_1 + x_2}{2} = \frac{-b}{2a};$$

• O polinómio pode ser fatorizado da forma

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2});$$

- Se os coeficientes a, b, c do polinómio são reais, então as raízes são complexas conjugadas;
- Se as raízes são complexas com parte imaginária não nula, o gráfico da função não interseta o eixo das abcissas;
- Se as raízes são reais e iguais (raíz dupla ou raiz de multiplicidade dois), o gráfico interseta o eixo das abcissas num só ponto;

Exercício 1. Determinar as raízes. Esboçar o gráfico. Indicar a abcissa do vértice. Escrever na forma fatorizada $a(x-x_1)(x-x_2)$.

(a)
$$f(x) = -2x^2 - 2x + 4$$
 (b) $f(x) = 3x^2 + 3x - 18$

(b)
$$f(x) = 3x^2 + 3x - 18$$

(c)
$$f(r) = r^2 - 4r + 5$$

(d)
$$f(r) = 2r^2 = 2$$

(c)
$$f(x) = x^2 - 4x + 5$$
 (d) $f(x) = 2x^2 - 2$
(e) $f(x) = 3x^2 + 12x + 12$ (f) $f(x) = -x^2 + 6x - 9$

$$(f) f(x) = -x^2 + 6x - 9$$

Resolução.

• Determinar as raízes.

(a)
$$-2x^2 - 2x + 4 = 0 \Leftrightarrow -x^2 - x + 2 = 0 \Leftrightarrow x = \frac{1 \pm \sqrt{1+8}}{-2} \Leftrightarrow (x_1 = -2) \lor (x_2 = 1)$$

(b)
$$3x^2 + 3x - 18 = 0 \Leftrightarrow x^2 + x - 6 = 0 \Leftrightarrow x = \frac{-1 \pm \sqrt{1 + 24}}{-2} \Leftrightarrow (x_1 = -3) \lor (x_2 = 2)$$

(c)
$$x^2 - 4x + 5 = 0 \Leftrightarrow x = \frac{4 \pm \sqrt{16 + 20}}{-2} \Leftrightarrow (x_1 = -2 - i) \lor (x_2 = -2 + i)$$

$$(d) - 2x^2 - 2 = 0 \Leftrightarrow -x^2 + 2 = 0 \Leftrightarrow x = \pm \sqrt{-1} = \pm i \Leftrightarrow (x_1 = -i) \lor (x_2 = i)$$

(e)
$$3x^2 + 12x + 12 = 0 \Leftrightarrow x^2 + 4x + 4 = 0 \Leftrightarrow x = \frac{-4 \pm \sqrt{16 - 16}}{2} \Leftrightarrow (x_1 = -2) \lor (x_2 = -2)$$

$$(f) - x^2 + 6x - 9 = 0 \Leftrightarrow x = \frac{-6 \pm \sqrt{36 - 36}}{-2} \Leftrightarrow (x_1 = 3) \lor (x_2 = 3)$$

- Esboçar os gráficos: ver a figura 1
- Indicar a abcissa do vértice, x_v .

(a)
$$x_v = \frac{-b}{2a} = \frac{-(-2)}{-4} = -\frac{1}{2}$$
 (b) $x_v = \frac{-b}{2a} = \frac{-3}{6} = -\frac{1}{2}$

(b)
$$x_v = \frac{-b}{2a} = \frac{-3}{6} = -\frac{1}{2}$$

(c)
$$x_v = \frac{-b}{2a} = \frac{-(-4)}{2} = 2$$

(d)
$$x_v = \frac{-b}{2a} = \frac{-0}{-4} = 0$$

(e)
$$x_v = \frac{-b}{2a} = \frac{-12}{6} = -2$$

(f)
$$x_v = \frac{-b}{2a} = \frac{-6}{-2} = 3$$

• Escrever na forma fatorizada.

(a)
$$-2x^2 - 2x + 4 = -2(x+2)(x-1)$$

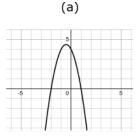
(a)
$$-2x^2 - 2x + 4 = -2(x+2)(x-1)$$
 (b) $3x^2 + 3x - 18 = 3(x+3)(x-2)$

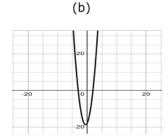
(c)
$$x^2 - 4x + 5 = (x+2+i)(x+2-i)$$
 (d) $-2x^2 - 2 = -2(x+i)(x-i)$

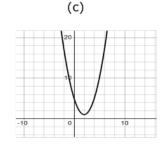
$$(d) -2x^2 - 2 = -2(x+i)(x-i)$$

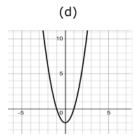
(e)
$$3x^2 + 12x + 12 = 3(x+2)(x+2)$$
 (f) $-x^2 + 6x - 9 = -(x-3)(x-3)$

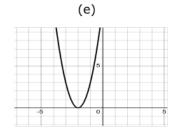
$$(f) -x^2 + 6x - 9 = -(x-3)(x-3)$$











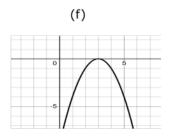


Figura 1