Sistemas de Numeração e Códigos Binários

sistema de numeração que permitia, através de dez símbolos distintos (algarismos), representar uma determinada grandeza em função de outra tomada como unidade.

Sistema Decimal - Permite representar qualquer quantidade por intermédio de uma soma ponderada de potências de base 10.

$$852=8\times10^2+5\times10^1+2\times10^0$$

$$0.852=8x10^{-1}+5x10^{-2}+2x10^{-3}$$

Características de um número decimal:

- Coeficientes de potências de base 10 cujos expoentes crescem com passos de uma unidade da direita para a esquerda.
- Parte fraccionária são coeficientes de potências de base 10 cujos expoentes decrescem em passos de uma unidade da esquerda para a direita.

Outras bases de numeração podem ser utilizadas: <u>base 2</u>, <u>base 8</u> e a <u>base 16</u>.

O sistema binário de numeração contempla apenas dois símbolos distintos: o zero (0) e o um (1)

A contribuição de um bit num número binário depende da posição relativa que ele ocupa.

Equivalente decimal: $10011_2 = 1x2^4 + 0x2^3 + 0x2^2 + 1x2^1 + 1x2^0 = 19_{10}$

Bit mais significativo (MSB) vs. Bit menos significativo

Conceito de virgula binária:

$$0,10011_2 = 1x2^{-1} + 0x2^{-2} + 0x2^{-3} + 1x2^{-4} + 1x2^{-5} = 0.59375_{10}$$

Qual o maior número decimal que se consegue escrever com apenas dois dígitos?

Num número binário qual o maior número decimal inteiro que se consegue representar com n bits?

Dependendo do número de bits de uma palavra na base 2: Nibble ou Byte

41.1. 0	4 N.U. O	Decimal	Binário	Decimal	Binário
1kb = ?	1Mb= ?	0	0	9	1001
		1	1	10	1010
		2	10	11	1011
		3	11	12	1100
		4	100	13	1101
		5	101	14	1110
		6	110	15	1111
		7	111	16	10000
		8	1000	17	10001

Digitals: Y2007/08

Sistemas

@

Coelho, J.P.

OCTAL e HEXADÉCIMAL - são normalmente usadas como representação alternativa de números binários.

Decir	mal Binário	Octal	Hexad.	Decimal	Binário	Octal	Hexad.
0	00000	0	0	16	10000	20	10
1	00001	1	1	17	10001	21	11
2	00010	2	2	18	10010	22	12
3	00011	3	3	19	10011	23	13
4	00100	4	4	20	10100	24	14
5	00101	5	5	21	10101	25	15
6	00110	6	6	22	10110	26	16
7	00111	7	7	23	10111	27	17
8	01000	10	8	24	11000	30	18
9	01001	11	9	25	11001	31	19
10	01010	12	Α	26	11010	32	1A
11	01011	13	В	27	11011	33	1B
12	01100	14	С	28	11100	34	1C
13	01101	15	D	29	11101	35	1D
14	01110	16	Е	30	11110	36	1E
15	01111	17	F	31	11111	37	1F

$$27,63_8 = 2x8^1 + 7x8^0 + 6x8^{-1} + 3x8^{-2} = 23.796875_{10}$$

 $9CA,3B_{16} = 9x16^2 + 12x16^1 + 10x16^0 + 3x16^{-1} + 11x16^{-2} = 2506.23046875_{10}$

Técnicas de Conversão entre Bases:

Binário < > Decimal

Binário - > Decimal : Soma Ponderada

Decimal -> Binário: Divisão (Multiplicação)

Digitais: Y2007/08 Sistemas **@** Coelho, J.P.

Se o número a converter da base 10 para a base 2 não for inteiro puro mas tiver uma parte fraccionária, a conversão é feita em duas etapas

Parte Inteira + Parte Decimal

$$0.703125 \times 2 = 1.40625$$

$$0.40625 \times 2 = 0.8125$$

$$0.8125 \times 2 = 1.625$$

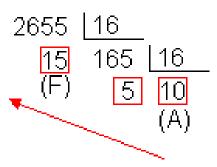
$$0.625 \times 2 = 1.25$$

$$0.25 \times 2 = 0.5$$

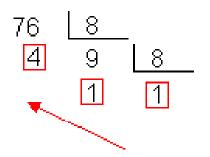
$$0.5 \times 2 = 1.0$$

$$0,703125 \times 2 = 1,40625$$

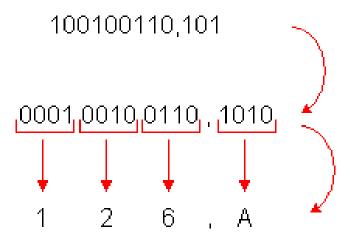
$$0,40625 \times 2 = 0,8125$$


$$0.8125 \times 2 = 1.625$$

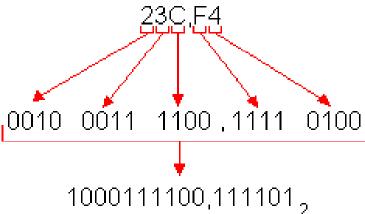
$$0,625 \times 2 = 1,25$$

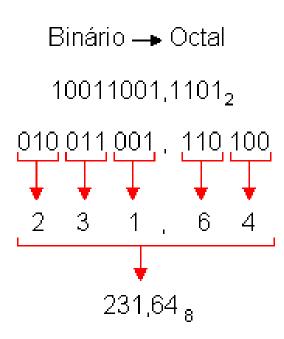

$$0.25 \times 2 = 0.5$$

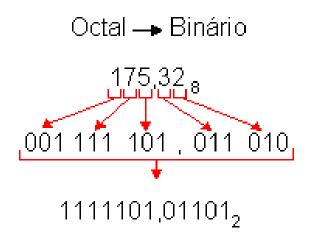
$$0.5 \times 2 = 1.0$$


Decimal -> Octal ou Hexadecimal 2655,6396484375₁₀

$$0,6396484375 \times 16 = 10,234375$$
 $0.234375 \times 16 = 3,75$
 $0,75 \times 16 = 12,0$


Binário <-> Hexadécimal


Formar grupos de 4 bits.


Se necessário adicionar zeros à equerda do MSB ou à direita do LSB da parte fraccionária

Converter cada grupo no valor equivalente em hexadecimal.

Binário <-> Octal

Digitais: Y2007/08

Sistemas

@

Coelho, J.P.

Representação de Números Negativos em Base 2

Sinal e Magnitude

$$011011001 = +217$$

$$111011001 = -217$$

Complemento para 1

$$011011001 = +217$$

100100110=-217

Complemento de 1

Complemento para 2

$$011011001 = +217$$

100100111 = -217

Complemento de 2

Digitais: Y2007/08

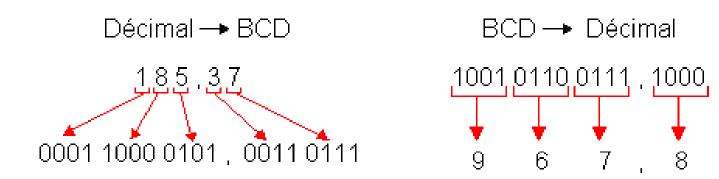
Sistemas

(B)

Coelho, J.P.

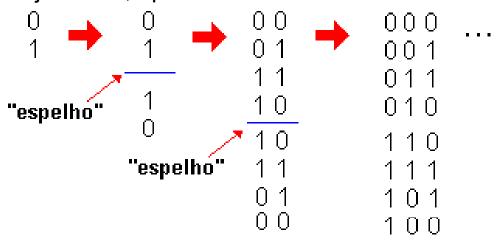
1101110 -> 110 (8 bit) ou -18 (7 bit)

Códigos Binários


conjunto de símbolos (alfabeto) e das regras que permitem ordenar e combinar esses símbolos.

O objectivo destes códigos é o de facilitar a comunicação entre Homem e máquina.

Ponderados


É possível associar pesos a cada um dos bits da palavra..

BCD8421 BCD 4221 BCD 5421

Não-Ponderados

Código Gray: possui a particularidade de que, entre valores adjacentes, apenas se altera um bit.

Decimal (p/	Gray
referência)	abcd
0	0000
1	0001
2	0011
3	0010
4	0110
5	0111
6	0101
7	0100
8	1100
9	1101
10	1111
11	1110
12	1010
13	1011
14	1001
15	1000

Outro código binário não-ponderado extremamente difundido é o código ASCII (American Standard Code for Information Exchange)

Sistemas Digitais: Y2007/08 **(B)** Coelho, J.P.

ÁLGEBRA DE BOOLE

- Investigação das leis fundamentais das operações da mente humana ligadas ao raciocínio.
- A álgebra tradicional opera com relações quantitativas enquanto que a álgebra de Boole opera com relações lógicas
- Na álgebra Booleana, as funções são binárias de variáveis binárias, ou seja apenas podem apresentar dois estados distintos: Verdadeiro ou Falso.

'1' e '0' representam estados físicos da matéria

• Além da forma algébrica, as funções Booleanas podem ser caracterizadas por tabela de verdades.

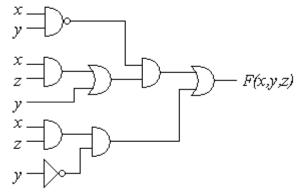
OPERADORES LÓGICOS

Na álgebra de Boole existem quatro operadores lógicos elementares.
 São eles a <u>Igualdade</u>, a <u>Negação</u>, a <u>União</u> e a <u>Intersecção</u>

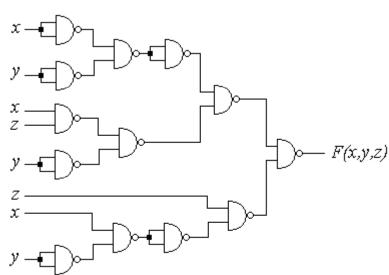
Sejam x e y variáveis booleanas e F(x,y) uma função booleana de variável booleana:

- Operador Igualdade: T. Verdades + símbolo lógico
- Operador Negação: T. Verdades + símbolo lógico
- Operador Intersecção: T. Verdades + símbolo lógico
- Operador Reunião: T. Verdades + símbolo lógico

Digitais: Y2007/08 Sistemas @ Coelho, J.P.


Outras Portas Lógicas:


- Reunião Exclusiva (XOR)
- Complemento de União (NOR)
- Complemento de Intersecção (NAND)


Portas NAND E NOR como funções universais:

Função	Portas NAND	Portas NOR		
<u>x</u> y	X-D-Y	×		
X y	x y			
<u>x</u> <u>y</u>	ž Do	X Z		

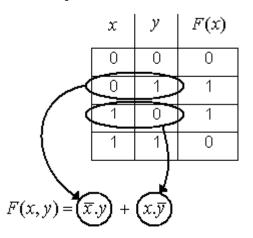
Exemplo

Digitais: Y2007/08

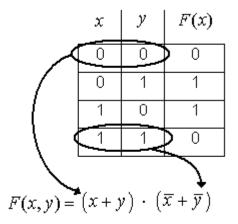
Sistemas

@

Coelho, J.P.


Forma Canónica de uma Expressão Lógica

• Forma canónica de uma função Booleana: produto de somas ou somas de produtos nos quais aparecem todas as variáveis em cada um dos termos seja na sua forma directa ou complementada.


MINTERMS ou canónica disjuntiva: Soma de todos os produtos lógicos que dão à função o valor '1'.

MAXTERMS ou canónica conjuntiva: Multiplicação de todas as somas lógicas que dão à função o valor '0'.

Forma Disjuntiva

Forma Conjuntiva

Identidades e Regras da Álgebra Booleana

Coelho, J.P. @ Sistemas Digitais: Y2007/08

Postulados						
A + 0 = A	$A \cdot 0 = 0$					
A + A = A	$A \cdot A = A$					
A + 1 = 1	$A \cdot 1 = A$					
$A + \overline{A} = 1$	$A \cdot \overline{A} = 0$					

Regras						
Propriedade Comutativa	A + B = B + A					
Trophicadae Comatativa	$A \cdot B = B \cdot A$					
Propriedade Associativa	(A+B)+C=A+(B+C)					
1 Topricuade Associativa	$(A \cdot B) \cdot C = A \cdot (B \cdot C)$					
Propriedade Distributiva	$A \cdot (B+C) = A \cdot B + A \cdot C$					
Fropriedade Distributiva	$A + B \cdot C = (A + B) \cdot (A + C)$					
Abaana	$A + A \cdot B = A$					
Absorção	$A \cdot (A+B) = A$					
	$A + \overline{A} \cdot B = A + B$					
(Alguns Teoremas Úteis)	$A \cdot \left(\overline{A} + B\right) = A \cdot B$					
(Alguns reoremas oters)	$A \cdot B + \overline{A} \cdot C + B \cdot C = A \cdot B + \overline{A} \cdot C$					
	$(A+B)\cdot(\overline{A}+C)\cdot(B+C)=(A+B)\cdot(\overline{A}+C)$					
Lois do Do Morgan	$\overline{A+B} = \overline{A} \cdot \overline{B}$					
Leis de De Morgan	$\overline{A \cdot B} = \overline{A} + \overline{B}$					

Portas NAND

$$F(x, y, z) = \overline{(x+y)} \cdot (x \cdot z + y) + x \cdot \overline{y} \cdot z$$

$$= \overline{(x+y)} \cdot (x \cdot z + y) + x \cdot \overline{y} \cdot z$$

$$= \overline{(x+y)} \cdot (xz + y) \cdot \overline{x} \cdot \overline{y} \cdot z$$

$$= \overline{(x+y)} \cdot \overline{(xz+y)} \cdot \overline{x} \cdot \overline{y} \cdot z$$

$$= \overline{(x+y)} \cdot \overline{(xz+y)} \cdot \overline{x} \cdot \overline{y} \cdot z$$

$$= \overline{(x+y)} \cdot \overline{(xz+y)} \cdot \overline{x} \cdot \overline{y} \cdot z$$

Portas NOR

$$F(x, y, z) = \overline{(x+y)} \cdot (x \cdot z + y) + x \cdot \overline{y} \cdot z$$

$$= \overline{(x+y)} \cdot (x \cdot z + y) + \overline{(x \cdot \overline{y} \cdot z)}$$

$$= \overline{(x+y)} + \overline{(\overline{x}z+y)} + \overline{(\overline{x}\overline{y}+z)}$$

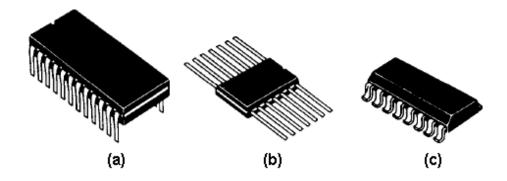
$$= \overline{(x+y)} + \overline{(\overline{x}+\overline{z}+y)} + \overline{(\overline{x}\overline{y}+z)}$$

$$= \overline{(x+y)} + \overline{(\overline{x}+\overline{z}+y)} + \overline{(\overline{x}\overline{y}+z)}$$

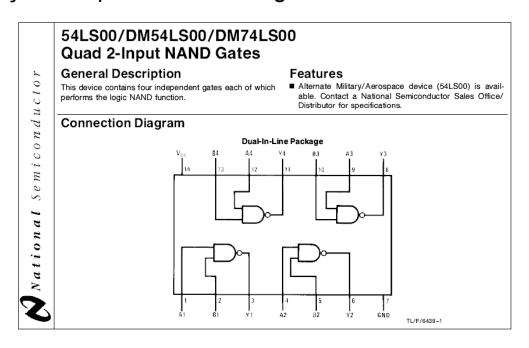
$$= \overline{(x+y)} + \overline{(\overline{x}+\overline{z}+y)} + \overline{(\overline{x}\overline{y}+z)}$$

Digitais: Y2007/08

Sistemas


@

Coelho, J.P.


CIRCUITOS COMBINATÓRIOS

- Até ao momento foram revistas as pedras angulares que suportam a análise e projecto de sistemas lógicos.
- Da Álgebra de Boole aos computadores digitais!
- O estado da arte dos circuitos electrónicos digitais assenta num dispositivo electrónico designado por circuito integrado (CI)
- Um circuito integrado é um circuito electrónico completo constituído numa pastilha de material semicondutor
- Todos os componentes do circuito são formados simultaneamente por um processo designado por processo planar.
- Existem os mais variados tipo de circuitos integrados e para as mais diversas funções.

- Foi criado por um conjunto de fabricantes uma série de circuitos integrados possuidores das funções lógicas mais utilizadas (por exemplo portas NAND, NOR, NOT etc.)
- Estes dispositivos foram projectados de forma a que circuitos integrados distintos com funções lógicas distintas fossem compatíveis electricamente entre si
- Na prática não seria possível conectar uma pastilha de silício directamente a um circuito electrónico.

• Identificação dos pinos de um integrado!

 Num circuito integrado lógico, o número de portas necessárias à execução das funções dependem da complexidade da operação a ser realizada

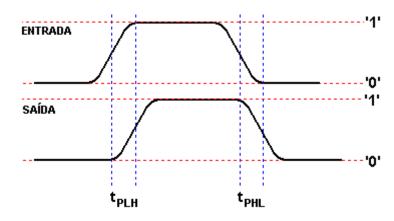
Nível de Integração	Número de Portas
Integração em Pequena Escala (SSI)	<12
Integração em Média Escala (MSI)	[12,100[
Integração em Larga Escala (LSI)	[100,10000[
Integração em Muito Larga Escala (VLSI)	[10000,100000[
Integração em Ultra Larga Escala (ULSI)	≥100000

	· · · · · · · · · · · · · · · · · · ·
V_{IH} (min)	Nível de tensão mínimo capaz de representar o nível lógico '1' à entrada de um circuito digital
$V_{IL}(\max)$	Nível de tensão máximo capaz de representar ainda o nível lógico '0' à entrada de um circuito digital
V_{OH} (min)	Nível de tensão mínimo capaz de representar o nível lógico '1' à saída de um circuito digital
$V_{\scriptscriptstyle OL}({ m max})$	Nível de tensão máximo capaz de representar o nível lógico '0' à saída de um
	circuito digital
I_{IH}	Valor da corrente que circula na entrada de um circuito digital quando um nível lógico alto é aplicado.
$I_{{\scriptscriptstyle IL}}$	Valor da corrente que circula na entrada de um circuito digital, quando um nível lógico baixo é aplicado.
ī	Valor da corrente que circula na saída de um circuito digital, quando um nível
I_{OH}	lógico alto é gerado.
I_{oL}	Valor da corrente que circula na saída de um circuito digital, quando um nível

lógico baixo é gerado.

Recom	Recommended Operating Conditions							
Symbol	Parameter	DM54LS00			DM74LS00			Units
		Min	Nom	Max	Min	Nom	Max	Onits
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
V _{IL}	Low Level Input Voltage			0.7			0.8	V
I _{OH}	High Level Output Current			-0.4			-0.4	mA
l _{OL}	Low Level Output Current			4			8	mA
TA	Free Air Operating Temperature	-55		125	0		70	°C

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)


Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_{I} = -18 \text{ mA}$				-1.5	V
V _{OH}	High Level Output	$V_{CC} = Min, I_{OH} = Max,$	DM54	2.5	3.4		v
	Voltage	V _{IL} = Max	DM74	2.7	3.4		
V _{OL}	Low Level Output	$V_{CC} = Min, I_{OL} = Max,$	DM54		0.25	0.4	
	Voltage	V _{IH} = Min	DM74		0.35	0.5	V
		I _{OL} = 4 mA, V _{CC} = Min	DM74		0.25	0.4	
lı	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 7V$				0.1	mA
I _{IH}	High Level Input Current	$V_{CC} = Max, V_I = 2.7V$				20	μΑ
I _{IL}	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$				-0.36	mA
Ios	Short Circuit	V _{CC} = Max	DM54	- 20		-100	mA
	Output Current	(Note 2) DM74		- 20		-100	"
Госн	Supply Current with Outputs High	$V_{CC} = Max$			0.8	1.6	mA
ICCL	Supply Current with Outputs Low	$V_{CC} = Max$			2.4	4.4	mA

- Teoricamente é possível ligar um número infinito de portas lógicas a outra porta lógica
- Define-se *Fan-Out* como o número máximo de portas lógicas que podem ser ligadas simultaneamente à saída de outra porta lógica

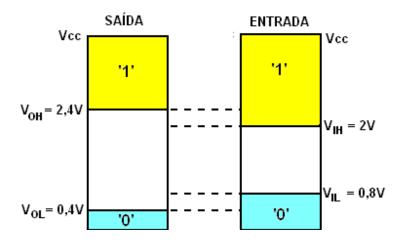
$$FO_{L} = \frac{I_{OL}}{I_{IL}} \qquad FO_{H} = \frac{I_{OH}}{I_{IH}}$$

Se FOL for diferente de FOH considera-se o menor dos dois!

Outra característica a considerar: tempo de propagação das portas

Digitals: Y2007/08

Sistemas


@

Coelho, J.P.

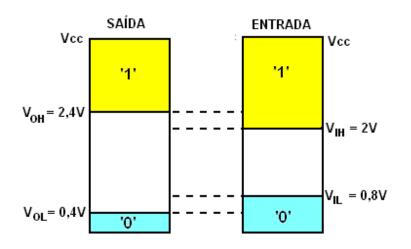
• A capacidade de um circuito lógico tolerar variações de tensão sem alterar o seu funcionamento é quantificada pela <u>margem de ruído</u>.

$$MR_H = V_{OH}(\min) - V_{IH}(\min)$$

$$MR_L = V_{IL}(\max) - V_{OL}(\max)$$

Digitais: Y2007/08 Sistemas **(B)** Coelho, J.P.

Famílias de CI Lógicos


- TTL
- CMOS

Diferenças:

- Concepção Interna
- Níveis de Tensão
- Outas características eléctricas

TTL

Na família TTL os dispositivos são <u>alimentados</u> por uma fonte de tensão contínua de 5V

(banda morta)

Na lógica TTL, uma entradas desconectada é considerada como estando ao nível lógico alto.

• Por forma a definir que tipo de operação lógica realiza um CI TTL, estes possuem uma referência escrita sobre o invólucro.

Código	Significado	Particularidade
L	Low Power	Baixo consumo de potência quando comparada com a série padrão. Baixa velocidade de operação.(obsoleta)
н	High-Velocity	Maior velocidade de operação do que a série L mas maior consumo de potência.(obsoleta)
s	Schottky	Reduz o retardo de armazenamento aumentado a velocidade de operação. Consumo de potência equivalente à série H.
LS	Low-Power Schottky	Versão S com menor consumo e menor velocidade.
AS	Advanced Schottky	Série TTL mais rápida. Maiores Fan-Outs
ALS	Advanced Low-Power Schottky	Melhor desempenho que a série LS no que se refere à potência e velocidade de operação

Código	Designação	
74LS00	4 Portas NAND de duas entradas	
74LS02	4 Portas NOR de duas entradas	
74LS04	6 Portas Inversoras	
74LS08	4 portas AND de duas entradas	
74LS10	3 portas NAND de três entradas	
74LS11	3 portas AND de três entradas	

CMOS

Principais características

- Baixo consumo de potência
- Elevada imunidade ao ruído
- Faixa de alimentação que se pode estender dos 3 aos 18V

O processo de fabrico da tecnologia CMOS é mais simples que o da TTL permitindo adicionalmente uma maior densidade de integração

<u>Desvantagens</u>

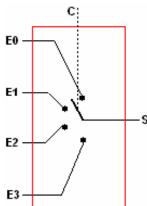
- Menores velocidades de operação
- Homogeneidade de características de operação entre fabricantes
- A gama de valores que representam os estados lógicos não são constantes

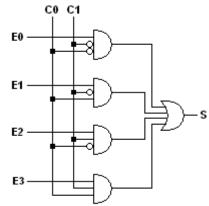
- As séries 4000 e 14000 foram as primeiras da família CMOS.
- Séries mais recentes : 74C, 74HC e 74HCT.
- Estas ultimas três séries possuem a particularidade de serem compatíveis pino-a-pino com os seus homólogos TTL

Código	Designação
4000	2 Portas NOR de três entradas e Inversor
4002	2 Portas NOR de quatro entradas
4012	2 Portas NAND de quatro entradas
74HC00	4 portas NAND de duas entradas
74HC107	Duplo Flip-Flop JK com Clear
74HC138	Descodificador 3 para 8

	74HC	4000B	74	74S	74LS	74AS	74ALS
Potência Dissipada (mW)	0,0025	0,001	10	20	2	8	1,2
Retardo Propagação (ns)	8	50	9	3	9,5	1,7	4
Produto velocidade/potência @100 KHz (pJ)	1,4	5	90	60	19	13,6	4,8
Máxima Frequência de Operação (MHz)	40	12	35	12,5	45	200	70
Margem de Ruído (V)	0,9	1,5	0,4	0,3	0,3	0,3	0,4

Digitals: Y2007/08

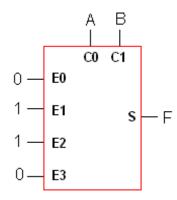

Sistemas


@

Coelho, J.P.

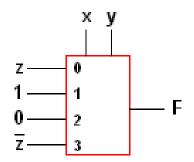
<u>Multiplexers e Desmultiplexers</u>

- A função de multiplexar consiste em transmitir por um só canal de saída alguma da informação presente em diversas linhas de entrada.
- Este tipo de dispositivo é constituído por um conjunto de 2*n* entradas, apenas uma saída e um conjunto de *n* linhas de controlo (endereço)
- Para um determinado instante de tempo, e dependendo do estado das linhas de controlo, a saída possuí o valor lógico idêntico a uma e uma só das suas entradas.



C0	C1	S
0	0	E0
0	1	E1
1 1	0	E2
1	1	E3

- Como exemplo de um multiplexer comercial em tecnologia TTL aponta-se, por exemplo, o **74LS42**.
- Um multiplexer pode ser usado também para gerar funções lógicas arbitrárias das variáveis de controlo.

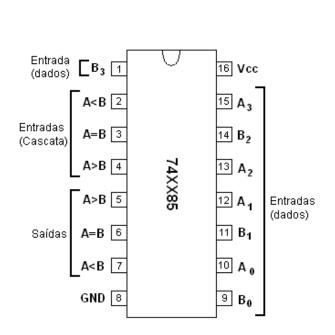

Exemplo #1: Implementação da função OU-EXCLUSIVO

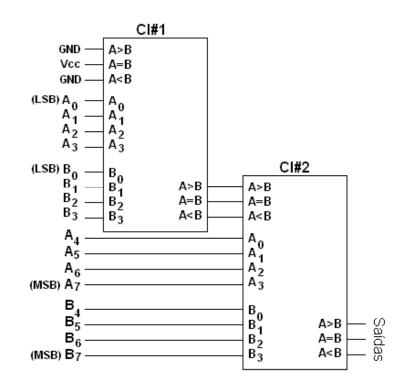
Exemplo #2:

24		_	\boldsymbol{E}
Х	У	Z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

X	у	z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Digitais: Y2007/08


Sistemas


@

Coelho, J.P.

COMPARADORES DIGITAIS

• Os comparadores digitais são circuitos combinatórios usados para determinar se dois números binários são iguais ou distintos e, neste último caso, qual deles é maior.

Digitals: Y2007/08

Sistemas

®

Coelho, J.P.

A>B A=B A<B

sistemasdenumeraçãoecircuitosdelógicacombinatória