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Abstract 
This paper presents a segmental durations’ model applied to 
the European Portuguese language for TTS purposes. The 
model is based on a feed-forward neural network, trained with 
a back-propagation algorithm, and has as input a set of 
phonological and contextual features, automatically extracted 
from the text. The relative importance of each feature, 
concerning the correlation with segmental durations and 
improvements in the performance of the model, is presented. 
Finally the model is evaluated objectively and subjectively by 
a perceptual test. 

1. Introduction 
The present model is part of a global prosody model, which is 
presently under development in the authors’ Institutions, and 
the basic motivation is to use it in a Portuguese TTS system. 

Other durations' models are published in literature for 
other languages, and can be grouped in rule-based models, 
mathematical models and statistical models. 

Rule-based models should allow a straightforward 
knowledge of the effects of each feature in the duration of the 
segments. Examples of this type of models are the Klatt rule-
based model [1], the rule-based algorithm for French [2], 
presented by Zellner for different speech rates, and the look-
up-table for Galician [3]. 

Mathematical models usually appear as a Sum-of-
Products, where the features are statistically weighted and 
summed to produce the segmental duration [4]. 

Statistical duration models become more and more used 
with the availability of large phonetically labelled data-bases. 
Neural networks and regression trees are the more often used 
tools, applied in different ways for different languages and 
using different type of segments. Campbell [5] introduced the 
concept of Z-score to distribute the duration estimated by a 
neural network, for a syllable, among its segments. He argued 
in favour that the syllable is the more stable unit. Barbosa and 
Bailly also presented a two steps model for French [6] and 
Brazilian Portuguese [7]. In the first step, using a neural 
network, they estimate the duration of the Inter-Perceptual 
Centre Groups (IPGC), arguing that is the more stable unit. In 
the second step they distribute the duration of the IPCG among 
its segments, using the Z-score concept. This model can deal 
with different speech rates, and pauses. Other neural network-
based models were also presented for Spanish [8] and Arabic 
[9]. Example of a CART-based model applied for Korean can 
be found in [10]. 

In the next sections a neural network based model is 
presented to predicted segmental durations using a set of 
features carefully analysed for European Portuguese. In 
section 5 the model is evaluated. 
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2. Corpus 
ata used for training and test was extracted from the 
-IPB database [11]. This database consists of several 
extracted from newspapers that were read by a male 
sional radio broadcast speaker at the average speech rate 
phonemes/second. This database was then manually 
ed in three levels: 1- phonetic level, considering 46 
ent segments classes and also marking the tonic syllable; 
rd level marking beginning and end of words; and 3- 
 level marking the beginning and end of phrases as well 

thographic marks. Seven texts from the data-base were 
in a total of 101 paragraphs, mainly with declaratives 
terrogatives of very different dimensions, from one to 

undred words, consisting in a total of 18.700 segments in 
inutes of speech. The training set consists of 6 texts 
ning ≈15000 segments and the test set consists in one 
ontaining ≈3000 segments. The relative frequencies of 
onemes are identical in both sets. 

3. Features 
onsidered features were extracted by processing data 

the corpus’ labels with algorithms for syllabification [12] 
rouping words in the so-called accent groups. These 
s act like prosodic words aggregating neighbour 
les, and were created according to following rules: 

 Groups have more than 2 syllables in total. 

 Groups never end with words of less than 3 
phonemes. 

 Phrase marks are always group boundaries. 

 If more than one tonic syllable exists in the 
assembled group of words, then only the last is 
considered as tonic. 

n example of application of the concept of accent 
s is presented in the following sentence (‘a strong 
e with justice situation’): “uma forte / reserva / em 
o / à situação / da justiça”. 
 large number of features were considered as candidates 

 first phase of the work. The final set was established by 
dy of each feature considering its linear correlation with 
tput and observing its influence in the performance of 

odel by taking it out of the initial set of features. Some 
more than one feature were considered as a group and 
out together to check for consistency. The known 

ction between some features [4], changes the measured 
nces on the duration when they were considered isolated 
a group. The correlation coefficient appears to be a good 
tor for the influence of the features, but for the ones that 



are coded in more than one node, it is difficult to connect its 
correlations with the feature’s importance. 

Features were coded in different ways taking in 
consideration the minimization of number of nodes and the 
maximization of performance. 

The final list of features, the correlations (r) with 
segment’s durations and the number of nodes used to code, are 
presented in Table 1. Detailed specifications of each feature 
are presented in the following (phonemes are represented in 
SAMPA code): 

 

Table 1: Segment Features. 

Phonologic 
level 

Feature # 
nodes 

Correlation 
|r| 

Segment identity 44 0.01 to 0.26  
Phoneme Consonant in the end 

of word 
1 0.08 

Previous segment (-1) 20 0.05 to 0.23 
Next segment (+1) 12 0.05 to 0.28 
Next segment (+2) 4 0.08 to 0.14 

 
Phoneme 
context 

Next segment (+3) 2 0.05 to 0.11 
Type 1 0.18  

Syllable Vowel 1 0.21 
Type of previous 
syllable 

1 0.06 

Vowel in previous 
syllable 

1 0.08 

Vowel of next 
syllable 

1 0.15 

 
 
 
Syllable 
Context 

Distance to tonic 
syllable 

1 0.15 

Position in group 2 0.03 to 0.15 
Position in Phrase 2 0.04 to 0.24 

 
 
Foot Distance to next 

pause 
1 0.20 

Accent 
group 

Length 2 0.03 to 0.05 

Phrase Position of accent 
group 

3 0.02 to 0.11 

 

• Segment Identity: is coded activating the node 
correspondent to the segment. The segments are: 9 
vowels, 4 semi-vowels, 5 nasal vowels, 6 plosive 
consonants (closure part), 6 plosive consonants (burst 
part), 3 nasal consonants, 5 liquid consonants and 6 
fricative consonants. This is the major feature. 

• Consonant at the end of word: codes in one node if the 
actual segment is [r, l*, S] (l* is a velar l, in the end of 
syllable) in end of word position. This fact should slightly 
increase the length of the segment. It is a minor feature. 

• Previous segment (-1): the duration of the segment is 
statistically correlated with the type of the previous 
segment. The closure part of plosive consonants and 
fricative [S] are correlated with shorter segments in the 
next position. In case of closure segments this correlation 
is high because next segment is the burst part of plosive 
consonants that are very short. On the other way the burst 
part of plosive consonants [t, k, b, d, g], consonants [n, J, 
l, r, R, v, z] and pause, are correlated with longer 
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egments in the next position. These 20 segments are 
oded by activation of the correspondent node. It is a 
ajor feature. 

ext segment (+1): the duration is statistically correlated 
ith the type of the next segment. Segments [a, 6, u, 6~, 
~, t, d] are correlated with shorter segments in previous 
osition. Segments [l*, v] and closure part of plosive 
onsonants [t, d] are correlated with longer segments in 
he previous position, and pause is even highly correlated 
ith longer segments in the previous position. These 12 

egments are coded by activation of correspondent node. 
t is a major feature. 

ext segment (+2): the duration is statistically correlated 
ith the type of the second next segment. Segment [r] is 

orrelated with shorter last segments but one. Burst part 
f stop consonants [t, d] and pause are correlated with 
onger last segments but one. These 12 segments are 
oded by activation of correspondent node. 

ext segment (+3): segment [u] and pause are correlated 
ith longer antepenultimate segments. This feature is 

oded by activation of correspondent node. 

ype: the syllables considered are of the types: V, C, VC, 
V, CC, VCC, CVC, CCV, and CCVC. Types C and CC 

esult from elision of vowel. Syllables beginning with 
owel are correlated with longer segments. Syllables with 
onsonant clusters are correlated with shorter segments. 
his feature was coded in one node with values between 
 and 1 according to the correlation of the respective type 
f syllable with segments length. 

owel: codes the type of vowel in the syllable according 
o its average length. The considered 5 types are: long [a, 
, e, O, o], medium [6, i], short [@, u], diphthong and 
asal vowel. Long and nasal vowels are correlated with 
onger segments in the syllable. The others are slightly 
orrelated with shorter segments in syllable. The feature 
as coded in one node with values between 0 and 1 

ccording to the correlation of the respective type of 
owel in the syllable with segments length. 

ype of previous syllable: Some types of syllables are 
lightly correlated with segments in next syllable. 
yllables of types VC, CC and CVC, are slightly 
orrelated with shorter segments in next syllable. The 
eature was coded in one node with values between 0 and 
 according to the correlation of the respective type of 
yllable with segments length (different of feature type). 
t is a minor feature. 

owel in previous syllable: long and nasal vowels as well 
s diphthongs are negatively correlated with length of 
egments in next syllable. Medium and short vowels are 
ositively correlated. The feature was coded in one node 
ith values between 0 and 1 according to the respective 

orrelation with segments length (different of feature 
owel). It is a minor feature. 

owel of next syllable: length of segments is positively 
orrelated with short vowels in the next syllable. The 
ther types of vowels are negatively correlated. The 
eature was coded in one node with values between 0 and 
 according to the respective correlation with segments 



length (different of features vowel and vowel in previous 
syllable). 

• Distance to tonic syllable: five categories were 
considered to characterize distance to tonic syllable in the 
accent group: tonic syllable, previous syllable, before 
previous, next syllable and after next. As is well known 
syllable tonicity is highly correlated with length of 
segments, but also next and after next are positively 
correlated with length of segments. In opposition, the 
other categories are negatively correlated. The feature 
was coded in one node with values between 0 and 1 
according to the respective correlation. 

• Position in group: is the segment count value inside the 
accent group, taken both from the beginning and end of 
group. The position relative to the end of group is highly 
and negatively correlated with segment’s length. The 
position relative to the beginning is positively correlated 
with segment’s length, as expected, by opposition. It is 
coded in two nodes. 

• Position in Phrase: is the segment position count inside 
the phrase, both from beginning and end of phrase. 
Phrase is delimited by orthographic punctuation. The 
position relative to the end of phrase is highly and 
negatively correlated with segment’s length. The position 
near to the beginning is slightly correlated with segment’s 
length. It is coded in two nodes. 

• Distance to next pause: is the distance in number of 
segments to the next pause. Is highly and negatively 
correlated with longer segments. As the segments are 
closer to a pause the longer are their durations. It is coded 
in one node. This is a major feature. 

• Length: the number of phonemes and syllables, of the 
accent group. Is slightly correlated with longer segments. 
Coded in two nodes. This is a minor feature. 

• Position of accent group: is the position of group inside 
the phrase (beginning, middle and end). Beginning 
position and specially end position are correlated with 
longer segments. In opposite middle position groups are 
slightly correlated with shorter segments. It is coded by 
activation of correspondent node. This is a major feature. 

 
Other types of features were also considered but they 

didn’t improve performance. These features were: type of next 
syllable; length of phrase; type of sentence; previous segments 
(-2 and -3). 

4. Neural network 
The model consists of a fully connected feed-forward neural 
network. The output is one neuron that codes the segment 
duration in values between 0 and 1. This codification is linear 
in correspondence to the range 0 and 250 msec. The 99 input 
nodes receive the set of coded features. 

Training was done over the training set and using the test 
set for cross validation in order to avoid over-fitting. The test 
vector was used to stop training early if further training on the 
training set will hurt generalization capacity to the test set. The 
cost function used for training was the mean squared error 
between output and target values. 
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milar levels of performance are achieved with different 
rk architectures, varying in the number of intermediate 
, activating functions and training algorithms. Table 2 
s the best performances for the best configurations. The 
ting functions are hyperbolic logarithmic (Log), 
bolic tangent (Tan) and linear (Lin). The back-
gation training algorithms are Levenberg-Marquardt [13] 
esilient Back-propagation [14]. 

Table 2: Neural Network configurations and best 
performances. 

es in 
ers 

Activating 
Functions 

Training 
Algorithm 

Value of 
r in test 

set 
-1 Log-Log-Lin Lev.-Marq. 0.836 
-1 Tan-Log-Lin Lev.-Marq. 0.838 
-1 Tan-Log-Lin Lev.-Marq. 0.839 
-1 Tan-Lin Resilient–Backpr. 0.835 
-1 Tan-Log Resilient –Backpr. 0.837 
-1 Tan-Log-Lin Resilient –Backpr. 0.836 

-1 Tan-Log Resilient –Backpr. 0.836 

5. Model evaluation 
der to objectively evaluate the prediction accuracy, 
en predicted values and actual duration values, standard 
ion of the difference (σ) and linear correlation 
cient (r) were computed. Table 3 presents the indicator’s 
ons and respective scores, in test set. Fig. 1 presents the 
 duration values (T) versos predicted durations (A), in 
t. 

Table 3: Prediction accuracy. 
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erceptual evaluation 

paragraphs from the test set, with 30 words and 160 
nts in average, were used for perceptual evaluation. 
 stimuli of each paragraph were presented to 19 subjects 
aluation in a scale from 0 to 5, in a blind test. One 

lus was natural speech (natural); another was a time-
d natural speech with durations predicted by the model 
l); and the last stimulus, also time-warped speech, with 

verage duration value for each type of segment (no-
l). Time-warped modifications were done with the TD-
A algorithm. 
he average score, by subjects, classifies the model as 
lose to the natural one, and in four cases the model is 
preferred by subjects. Also, the average score, by 

raphs, classify the model as very close to the natural and 
preferred in one paragraph. Fig. 2 presents the scores of 
tual evaluation for natural, model and non-model 

nces. The natural utterances achieved a score of 4.30, the 



model utterances 4.12 and non-model utterances 3.53. 
Analysis of variance of the natural, model and non-model 
scores, gives a significance higher than 99.9% (p<1e-12 for 
F=31.4). Therefore, there is sufficient evidence to reject the 
hypothesis that the levels are all the same. The model is 0.18 
point (in 5) far from natural read speech, while non-model is 
0.77 far from natural read speech and 0.59 far from the model. 
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Fig. 1: Target (T) versos predicted (A) durations in test set. 
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Fig. 2: Mean Opinion Score for: 1-natural; 2-model; 3-non-

model. 

6. Conclusion 
A model based on a back-propagation trained neural network 
to predict segmental durations was presented. Phonological 
and contextual features were analysed considering the 
correlation with segmental durations as well as the influence 
on the improvement of the model performance. 

Almost equally good performance (r between 0.835 and 
0.839) was achieved with the different architectures / number 
of layers / activating function and training algorithms, 
presented in Table 2. 

The present model was objectively (Table 3) and 
subjectively (Fig. 2) evaluated. Objective evaluation gives a 
standard deviation of the difference between target and 
predicted duration of 19.5 msec, and a linear correlation 
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cient r=0.839. Subjective evaluation, with time-warped 
h, puts the model at 4.12 points, where the natural speech 
es 4.30 and absence of model reaches 3.53 (in 5). 
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